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Abstract

Deep Convolutional Neural Networks (DCNN) require millions of labeled training
examples for image classification and object detection tasks, which restrict these
models to domains where such datasets are available. In this paper, we explore the
use of unsupervised sparse coding applied to stereo-video data to help alleviate the
need for large amounts of labeled data. We show that replacing a typical supervised
convolutional layer with an unsupervised sparse-coding layer within a DCNN
allows for better performance on a car detection task when only a limited number of
labeled training examples is available. Furthermore, the network that incorporates
sparse coding allows for more consistent performance over varying initializations
and ordering of training examples when compared to a fully supervised DCNN.
Finally, we compare activations between the unsupervised sparse-coding layer and
the supervised convolutional layer, and show that the sparse representation exhibits
an encoding that is depth selective, whereas encodings from the convolutional
layer do not exhibit such selectivity. These result indicates promise for using
unsupervised sparse-coding approaches in real-world computer vision tasks in
domains with limited labeled training data.

1 Introduction

Over the last decade, Deep Convolutional Neural Networks (DCNN) trained with supervised learning
have emerged as the dominant paradigm for computer vision. These networks have shown impressive
results on computer vision tasks such as image labeling and object detection (e.g., [18}20]). However,
one drawback of DCNN:Gs is that they rely on large collections of training data that have been annotated
by humans, e.g., ImageNet [3]. As such, DCNNs are restricted to domains for which large datasets of
labeled examples are available.

We explore the use of unsupervised sparse coding within a supervised DCNN to help alleviate the
need for an abundance of training labels. Typically, the encodings (defined as the collection of
activation values calculated from a layer) in DCNNSs are computed via convolutions followed by a
nonlinearity, and for a given task the weights are trained via supervised learning. In contrast, sparse
coding [[15] aims to infer efficient, non-redundant encodings of a given input (e.g., photographs and
videos), and the weights are trained via an unsupervised method. Inspired by theories of efficient
coding in neural computation [[1]], sparse coding has been shown to exhibit similar properties to
biological neurons in early stages of mammalian visual processing [[15} 22]]. Modeling the accuracy
and precision of biology in visual perception could provide novel insights into computer vision tasks,
such as object detection. Additionally, the efficiency in representation exhibited by sparse coding
can be advantageous in specialized, non-Von Neumann hardware architectures. Indeed, there has
been work in implementations of sparse coding on low-power neuromorphic [9] and quantum [[13]]
hardware.

One domain in which non-redundant encoding should be useful is in multi-view sensing. An efficient
encoding should account for correlated offsets between different views of visual features. These
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offsets represent disparity in stereo images and optic flow in consecutive frames from a video. It
follows that an encoding that accounts for such offsets should have some notion of depth [5, |16].

In this paper, we compare two types of convolutional network models that differ only in the first layer:
(1) a sparse-coding network, in which the weights and activations in the first layer are computed
via unsupervised sparse coding, and (2) a supervised network, in which the first-layer weights are
learned via supervised training and activations are computed using these layer weights. In both
network models, the weights and activations in all subsequent layers are computed via supervised
convolutional layers. We show that sparse-coding networks is able to achieve better performance on
a vehicle detection task on stereo-video data with a minimal amount of training labels. Additionally,
we show that the performance of sparse-coding networks is more consistent—i.e., more robust to
randomized order of training data and random initializations—than comparable supervised networks.
Finally, we show that activations in the first (sparse-coding) layer in our sparse-coding networks are
depth selective, which may provide an explanation for the differences in performance we observe in
this study.

1.1 Related Work

Lundquist et al. [11] demonstrated that representations of stereo images obtained through sparse
coding allow for an encoding that achieves better performance than a convolutional layer in the
task of pixel-wise depth estimation. The authors show that the sparse encoding is inherently depth
selective, whereas the convolutional encoding is not. In this paper, we extend this work to encode
stereo-video clips and compare encodings on a vehicle-detection task.

A closely related study by Coates et al. [2] compared unsupervised and supervised methods with
two-layer networks on an image classification task. The authors demonstrated that an unsupervised
layer does not outperform a comparable layer with a convolutional encoding. While our experimental
results agree with this finding in the case of two layers, we find that limiting the number of labeled
training examples or adding an additional supervised layer in the sparse-coding network allows the
network to outperform the supervised network.

Recent work by Lotter et al. [10] shares the motivation of utilizing unsupervised learning to alleviate
the need for labeled training data. Specifically, the authors use unsupervised learning to predict
future frames of a video. They additionally show that their network achieves better performance than
standard DCNNs when each is trained on only a limited amount of training data. In contrast to future
frame prediction, our work aims to achieve image representation through sparse coding. Additionally,
Lotter et al. uses a recurrent neural network [7]] as the backbone of their network, whereas we use
sparse coding as the unsupervised learning algorithm.

Other work [4), [17] explores the use of unsupervised learning techniques within a supervised network.
However, most work in this area does not explore natural scenes (instead, focusing on datasets such
as MNIST for handwritten digit recognition). Here, we extend this work to the domain of stereo
video captured “in the wild”. Additionally, we explicitly compare performance between the use of
unsupervised learning versus supervised learning within a DCNN.

There has been other work in unsupervised learning of multi-view data [8 [12}[14]. In contrast, our
work aims to explicitly compare unsupervised learning to supervised learning for the task of vehicle
detection in multi-view data.

2 Sparse Coding

Sparse coding aims to represent an input (e.g., an image) as a linear combination of basis vectors
drawn from a provided set (referred to as a dictionary) such that the original signal is recoverable
with minimal degradation. Each basis vector is weighted by a scalar coefficient (referred to as
an activation), and the set of activations are taken to be the encoding of the input. Sparse coding
constrains the activations to be sparse (i.e., to have few nonzero activations), such that resulting
activations are non-redundant. Here, inferring the sparse set of activations is an optimization problem,
unlike encodings calculated via supervised convolutional layers.



Formally, sparse coding aims to minimize the cost function

Reconstruction error Sparsity term
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Specifically, the algorithm aims to minimize the difference between a given input I and a recon-
struction, where the difference is measured by Euclidean distance (i.e., || - ||2, or the Lo norm). The
reconstruction a ® P is calculated via a linear combination of basis vectors drawn from a dictionary
P, weighted by activation coefficients a. Here, ® denotes the transposed convolution operation [21]].
The sparsity term constrains the activations a to be sparse, by measuring the sum of the absolute
value of @ (i.e., || - ||1, or the L; norm)] X is a hyperparameter that controls the trade-off between the
reconstruction error and sparsity.

The process of sparse coding that minimizes Equation|[I} given a training set, is broken into two parts:
(1) encoding an input by finding a set of activations a for input I, and (2) learning a set of basis
vectors (i.e., a dictionary) ® for the dataset. Encoding input I involves inferring activations a by
minimizing Equation[T| with respect to a while holding ® fixed, for which we use the biologically
informed Locally Competitive Algorithm (LCA) [19]]. The final activations a are taken to be the
output activations of the corresponding input I. A sparse-coding layer can replace a convolutional
layer in a DCNN by using activations a as the output of the layer. Learning a dictionary for sparse
coding, analogous to learning filter weights in a DCNN, involves minimizing the cost function with
respect to @ while holding a fixed via backpropagation of Equation[I] In the domain of images,
dictionaries learned from sparse coding tend to represent oriented edges [[15]. In our method, the
input is first encoded using LCA, which is followed by one gradient descent step of minimizing the
cost function with respect to ® while holding a fixed. Basis vectors are normalized to have unit Lo
norm after each update. Updating ® is repeated for multiple input batches until convergence.

3 Experiments

We compare fully supervised networks with networks incorporating an unsupervised sparse-coding
layer by testing performance on a vehicle detection task using stereo video. We test the effect of
training set size by varying the number of labeled training examples available to the network. We
used the KITTT object detection dataset [6] for experiments. The dataset contains approximately
7000 examples, which we split into 6000 for training and 1000 for testing. Each example consists
of three stereo frames ordered in time, with bounding box annotations for various objects in the left
camera’s last frame as ground truth. We normalize the stereo-video inputs to have zero mean and
unit standard deviation and we downsampled them to be 256 x 64 pixels. We concatenated stereo
inputs such that the input contains six features, i.e., RGB inputs from both left and right cameras. We
kept time in a separate dimension for three-dimensional convolutions (for convolutional layers) or
transposed convolution (for sparse-coding layers) across the time, height, and width axes of the input.

We generated the ground truth for our task by sliding a 32 x 16-pixel non-overlapping window across
the left camera’s last frame. We considered a window to be a positive instance if the window overlaps
with any part of a car, van, or truck bounding box provided by the ground truth. The final output of
each network is the probability of a window containing a vehicle, for all windows in the frame. We
use the cross entropy between the ground truth and estimated probabilities as the supervised cost
function to train all supervised layers within the network.

We tested various encoding schemes along with various weight initializations for the first layer of
n-layer networks, as follows:
e ConvSup: Convolutional encoding. Weights are initialized randomly and learned via
supervised training for car detection.
o SparseUnsup: Unsupervised sparse encoding to learn activations and weights.

e ConvRand: Convolutional encoding. Weights are initialized randomly and are not updated.
This gives a random-weight baseline for the networks.

'The L, norm is used as a surrogate to the Lo norm (i.e., the number of nonzero elements), as Equationis
non-convex with respect to a if the L; norm is replaced with an Ly norm.



e ConvUnsup: Convolutional encoding. Weights are initialized from weights learned via
unsupervised sparse coding and are not updated. This control tests the effect of weights
versus encoding scheme on performance.

e ConvFinetune: Convolutional encoding. Weights are initialized from weights learned via
unsupervised sparse coding. The weights were additionally trained via supervised training
for car detection. This control is similar to ConvUnsup but tests the effect of additional
training on the first-layer weights.

Once the first layer is set to one of the five possible options, the remaining n — 1 layers contain
convolutional layers learned via backpropagation of the supervised loss. Each model was repeated
six times with different random initial conditions and random presentations of the training data to get
a range in performance for each network.

All models, experiments, and hyperparameters are available OllliIlCEI.

4 Results

TableE] shows the area under precision-versus-recall curve (AUC) of all models trained on all available
training data, each tested with two, three, and four layers. Each network was trained on the car-
detection task six times, with random weight initialization in higher layers and random ordering of
training examples, in order to obtain the range of AUC values ("scores"). The range columns in Table
1 gives the difference between the maximum and minimum scores over the six runs. Here, we find
that SparseUnsup performs worse than ConvSup and ConvFinetune with two layers, which agrees
with the findings of Coates et al. [2]. However, SparseUnsup outperforms ConvSup in networks
with three or more layers. This difference in performance due to the number of layers is likely because
of the lack in capacity of the two layer model to map input to detection.

One key finding is that SparseUnsup is much more consistent (i.e., much less susceptible to random
initial conditions and ordering of training examples) compared to all other models, as shown by
the low range of AUC scores. Interestingly, SparseUnsup has lower range in performance than
ConvUnsup, where both models use unsupervised weights learned via sparse coding and only differ
in encoding scheme. This suggests that inferring activations in sparse coding is likely the reason for
the additional consistency in performance.

Figure|[T] gives the performance of SparseUnsup and ConvSup while varying the number of labeled
training examples that each network was trained on. Here, the unsupervised weights were learned
from all available data, without using training labels. We find that SparseUnsup achieves better
performance than ConvSup across all numbers of labeled training examples tested for three and four
layer networks. Additionally, SparseUnsup achieves better performance with two layer networks
when the number of training examples is limited to only 100 training examples. Finally, SparseUnsup
is much more consistent (as shown by the low range in AUC scores) in performance than that of
ConvSup, for all models tested.

We compare activation maps for the first layer of SparseUnsup, ConvUnsup, and ConvSup in
Figure[2] We find that the sparse-coding activations are selective to certain depths. For example, in
Figure [2| for SparseUnsup, the top row shows a fast moving edge detector with a large binocular
shift that corresponds to image features close to the camera, whereas the bottom row shows a static
edge detector with no binocular shift that corresponds to image features far from the camera. In
contrast, no convolutional layers show depth selectivity.

To control for the difference in number of nonzero activations, we applied a threshold to convolutional
activations to match the number of nonzero activations in sparse coding, as shown in Figure [2]
ConvSup Sparse Control. Sparse controls for ConvUnsup produced no nonzero activations on
this input. Here, we show that sparsity-controlled activations from ConvSup do not show depth
selectivity, as activations are active on image features at different depths. In all, these results may
explain the differences in performance between convolutional layers and sparse-coding layers.

https://github.com/slundqui/TFSparseCode/
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Model | 2layers Range | 3layers Range | 4layers Range

ConvSup 0.672  0.045 0.672  0.021 0.681 0.086
SparseUnsup 0.619  0.004 | 0.681 0.009 | 0.693 0.014
ConvRand 0.467 0.009 | 0574 0.052 | 0592 0.033

ConvUnsup 0.561 0.044 | 0.609  0.028 | 0.609  0.033
ConvFinetune | 0.660  0.020 | 0.641 0.081 0.691 0.117
Table 1: Area under precision-versus-recall curve (AUC) for all models tested with varying depths.
Models were ran six times with different initial conditions. Each value represents the median AUC
score, and the range represents the difference between the highest score and the lowest score. Chance
scores at .221 AUC.
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Figure 1: Number of training examples available versus AUC score for SparseUnsup (red) and
ConvSup (blue) for two (left), three (middle), and four (right) layer networks. Each point is the
median score over six independent runs, with the area between the maximum and minimum score
filled in. Best viewed in color.
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Figure 2: Nonzero activations of example weights overlaid on the input image. Magnitude of
pixel values in green correspond to magnitude of activations. SparseUnsup: Activations for near
tuned (top) and far tuned (bottom) weights for the sparse-coding layer. ConvSup Sparse Control:
Activations from ConvSup with a threshold applied such that the number of activations matched that
of sparse coding across the dataset. Best viewed in color.

5 Conclusion

We have shown that a neural network that incorporates unsupervised learning is able to outperform a
fully supervised network when there exists limited labeled training data. Additionally, we show that
performance of fully supervised networks can vary substantially when compared to networks with a
sparse-coding layer. Finally, we compare activations and show that depth selective activations emerge
from applying sparse coding to stereo-video data. In all, these results show that unsupervised sparse
coding can be useful in domains where there exists a limited amount of available labeled training
data.
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