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1 Introduction

Deep neural networks (DNNs) often struggle when training on classes with very few samples. In
this paper, we focus on the extreme case: one-shot learning which has only one training sample
per category. We treat the problem of one-shot learning to be a transfer learning problem: how to
efficiently transfer the knowledge from ‘lots-of-examples’ to ‘one-example’ classes. More precisely,
we propose to fuse side information for compensating the missing information across classes. In
our paper, side information represents the relationship or prior knowledge between categories: for
example, unsupervised feature vectors of categories derived from Wikipedia such as Word2Vec
vectors (Mikolov et al., 2013), or tree hierarchy label structure such as WordNet structure (Miller,
1995).

We propose to first integrate side information using Hilbert-Schmidt Independence Criterion (HSIC)
(Gretton et al., 2005) between the learned data embeddings and the learned label-affinity kernel, which
is inferred from the side information. Since HSIC serves as a statistical dependency measurement,
our learned feature representations can be maximally dependent on the corresponding label space.
Next, to achieve better adaptation from ‘lots-of-examples’ to ‘one-examples’ classes, we introduce
an attention mechanism for ‘lots-of-examples’ classes on the learned label-affinity kernel.

We empirically show that our proposed learning architecture (see Fig. 1) improves over traditional
softmax regression networks as well as state-of-the-art attentional regression networks (Vinyals et al.,
2016) on one-shot recognition tasks.
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Figure 1: Fusing side information when learning data representation. We first construct a label-affinity kernel
through deep kernel learning using multiple types of side information. Then, we enforce the dependency
maximization criteria between the learned label-affinity kernel and the output embeddings of a regression model.
Samples in ‘lots-of-examples’ classes are used to generate quasi-samples for ‘one-example’ classes. These
generated quasi-samples can be viewed as additional training data.
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2 Proposed Method

2.1 Notation

Let S denote the support set for the classes with lots of training examples. S consists of N data-
label pairs S = {X,Y} = {xi, yi}Ni=1, where yi ranges within C classes. We assume that we
have M different kinds of side information R = {R1, R2, · · · , RM}, where Rm can either be
supervised/ unsupervised class embeddings or even hierarchical structures inferred from tree-based
object structures such as ImageNet (Krizhevsky et al., 2012). Similarly, we have a different support
set S′ for ‘one-examples’ classes that S′ = {X′,Y′} = {x′i, y′i}N

′

i=1 in which y′i ranges within C ′

classes (disjoint from the classes in S). Side information R′ = {R′1, R′2, · · · , R′M} for S′ is also
provided. Last, θX and θR are the model parameters dealing with the data and side information,
respectively.

2.2 Dependency Measure on Data and Side Information

The output embeddings gθX (X) and side information R can be seen as two interdependent random
variables, and we hope to maximize their dependency on each other. To achieve this goal, we adopt
Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005). HSIC acts as a non-parametric
independence test between two random variables, gθX (X) and R, by computing the Hilbert-Schmidt
norm of the covariance operator over the corresponding domains G × R. Furthermore, let kg and
kr be the kernels on G,R with associated Reproducing Kernel Hilbert Spaces (RKHSs). A slightly
biased empirical estimation of HSIC (Gretton et al., 2005) could be written as follows:

HSIC(S,R) =
1

(N − 1)2
tr(HKGHKR), (1)

where KG ∈ RN×N with KGij = kg(xi, xj) = gθX (xi)
> · gθX (xj), KR ∈ RN×N with KRij =

kr(yi, yj) =
∑M
m=1

1
M krm (yi, yj), and H ∈ RN×N with Hij = 1{i=j} − 1

(N−1)2 . We consider
two variants of krm (·, ·) based on whether Rm is represented by class embeddings or tree-based label
hierarchy. In short, KG and KR respectively stand for the relationships between data and categories,
and HSIC provides a statistical dependency guarantee on the learned embeddings and labels.
a) Rm is represented by class embeddings:
Class embeddings can either be supervised features such as human annotated features or unsupervised
features such as word2vec or glove features. Given Rm = {rmc }Cc=1 with rmc representing class
embeddings of class c, we define krm (·, ·) as:

krm(yi, yj) = fm,θR(r
m
yi)
> · fm,θR(rmyj ),

where fm,θR(·) denotes the non-linear mapping from Rm. In this setting, we can capture the intrinsic
structure by adjusting the categories’ affinity through learning fm,θR(·) for different types of side
information Rm.
b) Rm is represented by tree hierarchy:
If the labels form a tree hierarchy (e.g., wordnet (Miller, 1995) tree structure in ImageNet), then we
can represent the labels as a tree covariance matrix B defined in Bravo et al. (2009), which is proved
to be equivalent to the taxonomies in the tree (Blaschko et al., 2013). Specifically, following the
definition of Theorem 2 in Bravo et al. (2009), a matrix B ∈ RC×C is the tree-structured covariance
matrix if and only if B = VDV> where D ∈ R2C−1×2C−1 is the diagonal matrix indicating the
branch lengths of the tree and V ∈ RC×2C−1 denoting the topology.

For any given tree-based label hierarchy, we define krm (·, ·) to be

krm (yi, yj) = (Bm)yi,yj = (Y>BmY)i,j ,

where Y ∈ {0, 1}C×N is the label matrix and Bm is the tree-structured covariance matrix of Rm. In
other words, krm (yi, yj) indicates the weighted path from the root to the nearest common ancestor
of nodes yi and yj (see Lemma 1 in (Blaschko et al., 2013)).

In eq. (1), we can try integrating different types of side information Rm with both class-embedding
and tree-hierarchy-structure representation. In short, maximizing eq. (1) makes the data representation
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kernel KG maximally dependent on the side information R seen from the kernel matrix KR. Hence,
introducing HSIC criterion provides an excellent way of transferring knowledge across different
classes. Note that, if KR is an identity matrix, then there are no relationships between categories,
which results in a standard classification problem.

So far, we have defined a joint learning on the support set S and its side information R. If we
have access to different support set S′ and the corresponding side information R′, we can easily
incorporate them into the HSIC criterion; i.e., HSIC({S,S′}, {R,R′}). Hence we can effectively
transfer the knowledge both intra and inter sets.

2.3 Quasi-Samples Generation

Our second aim is to use a significant amount of data in ‘lots-of-examples’ classes to learn the
prediction model for ‘one-example’ classes. We present an attention mechanism over the side
information R and R′ to achieve this goal.

For a given data-label pair {x, y} in S, we define its quasi-label ỹ′ as follows:

ỹ′ = PθR(y
′|y;R,R′) =

∑
i∈S′

ar(y, y
′
i)y
′
i,

where ar(·, ·) acts as an attentional kernel from R to R′, which can be formulated as

ar(y, y
′
i) =

ekr(y,y
′
i)∑

j∈S′ e
kr(y,y′j)

.

In other words, given the learned label affinity kernel, for each category in ‘lots-of-examples’ classes,
we can form a label probability distribution on the label space for ‘one-example’ classes; i.e.,
ỹ′ = PθR(y

′|y;R,R′). Moreover, given the other set S′, we can also derive the label probability
distribution PθX (y′|x;S′) under any regression model for ‘one-example’ classes. Our strategy is
to minimize the cross entropy between Pθ(y′|x;S′) and ỹ′. In short, we can treat each data-label
pair {x, y} in ‘lots-of-examples’ classes to be a quasi-sample {x, ỹ′} for ‘one-example’ classes, as
illustrated in Fig. 2.
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Figure 2: Quasi-samples generation: We take dog as an example class from “lots-of-examples” categories.
“One-example” categories consist of cat, sheep, wolf, and bird. Best viewed in color.

2.4 Objectives

The overall training objective is defined as follows:

max αHSIC
(
{S,S′}, {R,R′}

)
+

1

|S|
∑
i∈S

y>i logPθX
(
yi|xi;S

)
+ α ỹ′>i logPθX

(
yi
′|xi;S′

)
,

where α is the trade-off parameter.

For any given test example x′test, the predicted output class is defined as

ŷ′test = argmaxy′ PθX (y′|x′test;S′).
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Table 1: Average performance (%) over 40 random trials for standard one-shot recognition task.

Dataset softmax_net HSIC†
softmax HSICsoftmax attention_net [Vinyals et al. (2016)] HSIC†

attention HSICattention

CUB 26.93 ± 2.41 29.26 ± 2.22 31.49 ± 2.28 29.12 ± 2.44 33.12 ± 2.48 33.75 ± 2.43
AwA 66.39 ± 5.38 69.98 ± 5.47 71.29 ± 5.64 72.27 ± 5.82 77.86 ± 4.76 76.98 ± 4.99

Tree Covariance Matrix
(inferred from wordnet)Learned Class-Affinity KernelNormalized Confusion Matrix

classification results
Normalized Confusion Matrix

regression results
chimpanzee
giant	panda

leopard
persian	cat
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Figure 3: For AwA dataset: (a) normalized confusion matrix for classification, (b) normalized confusion matrix
for regression, (c) learned class-affinity kernel in proposedattention, and (d) tree covariance matrix.

3 EVALUATION
We evaluate our method (HSICsoftmax and HSICattention) on top of two different regression net-
works: traditional softmax regression (softmax_net) and attentional regression (attention_net)
introduced by (Vinyals et al., 2016). Two datasets are adopted for one-shot recognition task: Caltech-
UCSD Birds 200-2011 (CUB) (Welinder et al., 2010) and Animals with Attributes (AwA) (Lampert
et al., 2014). CUB is a fine-grained dataset in which the categories are both visually and semantically
similar, while AwA is a general dataset. Four types of side information are considered: supervised
human annotated attributes (att) (Lampert et al., 2014), unsupervised Word2Vec features (w2v )
(Mikolov et al., 2013), unsupervised Glove features (glo) (Pennington et al., 2014), and the hi-
erarchy tree structures (hie) inferred from wordnet (Miller, 1995). We also provide two variants
(HSIC†softmax and HSIC†attention) when considering no quasi-samples generation technique.

One-Shot Recognition Task: Table 1 lists the average recognition performance for our standard
one-shot recognition experiments. HSICsoftmax and HSICattention are jointly learned with all four
types of side information: att , w2v , glo, and hie. We first observe that the methods with side
information achieve superior performance over the methods which do not learn with side information.
For example, HSICsoftmax improves over softmax_net by 4.56% on CUB dataset and HSICattention
enjoys 4.71% gain over attention_net on AwA dataset. These results indicate that fusing side
information can benefit one-shot learning.

Next, we examine the variants of our proposed architecture. In most cases, the construction of the
quasi-samples benefits the one-shot learning. The only exception is the 0.88% performance drop
from HSIC†attention to HSICattention in AwA. Nevertheless, we find that our model converges faster
when introducing the technique of generating quasi-samples.

Confusion Matrix and the Learned Class-Affinity Kernel: Following the above experimental
setting, for test classes in AwA, in Fig. 3, we provide the confusion matrix, the learned label-affinity
kernel using HSICattention, and the tree covariance matrix (Bravo et al., 2009). We first take a look
at the normalized confusion matrix for classification results. For example, we observe that seal is
often misclassified as humpback whale; and from the tree covariance matrix, we know that seal is
semantically most similar to humpback whale. Therefore, even though our model cannot predict seal
images correctly, it still can find its semantically most similar classes.

Additionally, it is not surprising that Fig. 3(b), normalized confusion matrix, is visually similar to
Fig. 3(c), the learned class-affinity kernel. The reason is that one of our objectives is to learn the
output embeddings of images to be maximally dependent on the given side information. Note that, in
this experiment, our side information contains supervised human annotated attributes, unsupervised
word vectors (Word2Vec (Mikolov et al., 2013) and Glove (Pennington et al., 2014)), and a WordNet
(Miller, 1995) tree hierarchy.

On the other hand, we also observe the obvious change in classes relationships from WordNet tree
hierarchy (Fig. 3 (d)) to our learned class-affinity kernel (Fig. 3 (c)). For instance, raccoon and giant
panda are species-related, but they distinctly differ in size and color. This important information
is missed in WordNet but not missed in human annotated features or word vectors extracted from
Wikipedia. Hence, our model bears the capability of arranging and properly fusing various types of
side information.
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Table 2: Average performance (%) for the different availability of side information.
CUB

available side information none att w2v glo hie att /w2v /glo all
HSICsoftmax 26.93 ± 2.41 30.93 ± 2.25 30.67 ± 2.10 30.53 ± 2.42 32.15 ± 2.28 30.58 ± 2.12 31.49 ± 2.28
HSICattention 29.12 ± 2.44 32.86 ± 2.34 33.37 ± 2.30 33.31 ± 2.50 34.10 ± 2.40 33.72 ± 2.45 33.75 ± 2.43

AwA

available side information none att w2v glo hie att /w2v /glo all
HSICsoftmax 66.39 ± 5.38 70.08 ± 5.27 69.30 ± 5.41 69.94 ± 5.62 73.32 ± 5.12 70.44 ± 6.74 71.29 ± 5.64
HSICattention 72.27 ± 5.82 76.60 ± 5.05 76.60 ± 5.15 77.38 ± 5.15 76.88 ± 5.27 76.84 ± 5.65 76.98 ± 4.99
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Figure 4: Parameter sensitivity analysis experiment. Our proposed methods jointly learn with all four side
information: att , w2v , glo, and hie . Best viewed in color.
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Figure 5: Experiment for increasing labeled instance per category in test classes. Our proposed methods jointly
learn with all four side information: att , w2v , glo, and hie . Best viewed in color.

Availability of Various Types of Side Information: In Table 2, we evaluate our proposed methods
when not all four types of side information are available during training. It is surprising to find that
there is no particular rule of combining multiple side information or using a single side information
to obtain the best performance. A possible reason would be the non-optima for using kernel average.
That is to say, in our current setting, we equally treat contribution of every type of side information to
the learning of our label-affinity kernel. Nevertheless, we still enjoy performance improvement of
using side information compared to not using it.

Parameter Sensitivity on α: Since α stands for the trade-off parameter for fusing side information
through HSIC and quasi-examples generation technique, we studied how it affects model performance.
We alter α from 0 to 1.0 by step size of 0.05 for both HSICsoftmax and HSICattention models. Fig. 4
shows that larger values of α does not lead to better performance. When α ≤ 0.3, our proposed
method outperforms softmax_net and attention_net. Note that HSICsoftmax and HSICattention
relax to softmax_net and attention_net when α = 0. When α > 0.3, the performance of our
proposed method begins to drop significantly, especially for HSICattention. This is primarily because
too large values of α may cause the output embeddings of images to be confused by semantically
similar but visually different classes in the learned label-affinity kernel (e.g., Fig. 3 (c)).

From One-Shot to Few-Shot Learning: In Fig. 5, we increase the labeled instances in test classes
and evaluate the performance of softmax_net, attention_net, and our proposed architecture. We
observe that HSICsoftmax converges to softmax_net and HSICattention converges to attention_net
when more labeled data are available in test classes during training. In other words, as labeled
instances increase, the power of fusing side information within deep learning diminishes. This result
is quite intuitive as deep architecture perform well when training on lots of labeled data.

For the fine-grained dataset CUB, we also observe that attentional regression methods are at first
outperform softmax regression methods, but perform worse when more labeled data are present during
training. Note that softmax regression networks have one additional softmax layer (one-hidden-layer
fully-connected neural network) compared to attentional regression networks. Therefore, softmax
regression networks can deal with more complex regression functions (i.e., regression for the fine-
grained CUB dataset) as long as they have enough labeled examples.

5



Acknowledgements

This work was supported by DARPA award D17AP00001, Google focused award, and Nvidia NVAIL
award.

References
Blaschko, M. B., Zaremba, W., and Gretton, A. (2013). Taxonomic prediction with tree-structured covariances.

In ECML-PKDD.

Bravo, H. C., Wright, S. J., Eng, K. H., Keles, S., and Wahba, G. (2009). Estimating tree-structured covariance
matrices via mixed-integer programming. In AISTATS.

Gretton, A., Bousquet, O., Smola, A., and Schölkopf, B. (2005). Measuring statistical dependence with
hilbert-schmidt norms. In International conference on algorithmic learning theory.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolutional neural
networks. In NIPS.

Lampert, C. H., Nickisch, H., and Harmeling, S. (2014). Attribute-based classification for zero-shot visual object
categorization. IEEE T-PAMI.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. In NIPS.

Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of the ACM, 38(11):39–41.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word representation. In
EMNLP.

Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al. (2016). Matching networks for one shot learning. In
NIPS.

Welinder, P., Branson, S., Mita, T., Wah, C., Schroff, F., Belongie, S., and Perona, P. (2010). Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology.

6


	Introduction
	Proposed Method
	Notation
	Dependency Measure on Data and Side Information
	Quasi-Samples Generation
	Objectives

	EVALUATION

