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Abstract

Many supervised learning problems require learning with small amounts of train-
ing data, since constructing large training datasets could be impractical due to
cost, labor, or unavailability of data. For such tasks, constructing deep learning
approaches that generalize to new data is difficult. In this paper, we demonstrate
the effectiveness of using entropy as a regularizer on image classification tasks
involving very small amounts of data. Optimizing with entropy regularization
enables neural networks to learn more generalizable feature representations in
the penultimate layers. We conduct experiments on training from scratch on lim-
ited subsets of CIFAR10 and CIFAR100 as well as on fine-tuning from existing
models on three datasets for fine-grained visual recognition (FGVC) and observe
significant improvements in classification performance on both tasks.

1 Introduction

A plethora of machine learning problems across scientific domains involve very small amounts of
training data. Applications of deep learning in medical imaging [15], fine-grained recognition [16, 14]
and domain adaptation [3] have training data that is orders of magnitude lower than traditional image
classification datasets such as ImageNet [5] or Places365 [27] which have thousands of training
samples for every output class.

The difficulty in obtaining annotated training samples for such tasks cannot necessarily be mitigated
easily; in applications such as medical image classification and fine-grained recognition, obtaining
annotations is expensive and requires domain experts [14]. In addition, due to concerns around
privacy (in medical imaging) or the inability to photograph certain fine-grained categories, obtaining
unlabeled raw samples in large amounts is in itself impractical.

The effectiveness of large-scale deep convolutional neural networks across tasks in computer vi-
sion [13, 23] have made deep learning the de facto choice for image classification. Apart from their
high computational complexity, another issue of concern is the requirement of high amounts of
training data for generalizable performance. Despite the incredible success of large CNNs trained on
ImageNet as generic image feature representations [6, 22], these networks do not naively generalize
well to tasks involving limited amounts of training data.

A common approach in such classification problems is to initialize a model on weights obtained
by training on a large corpus such as ImageNet, and fine-tuning the model on the target task. This
approach is preferred for such problems, with extensive analysis on techniques to improve fine-tuning
performance [4, 25]. Domain-specific neural network architectures have been designed for some
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of these problems, such as Bilinear Pooling for fine-grained visual recognition [14], and D-CAN
for histology image segmentation [2]. Pereyra et al. [19] experimented with the idea of penalizing
deep neural network classifiers for confident predictions. While they demonstrate improvements
in performance across several tasks, these improvements—especially on image classification—are
negligible (0.1% average improvements, which is within the standard deviation of the accuracy across
trials).

Penalizing overconfidence, is an interesting proposition, but applicable more strongly when limited
training data is present. In the absence of densely sampled data points, the training data is more prone
to have sampling biases and may not be representative of the underlying distribution. Hence, it is
reasonable to prevent the neural network classifier from making overconfident predictions in this
case.

In this paper, we establish the effectiveness of regularizing the entropy of the output predictions (a
measure for classifier overconfidence) on image classification problems with limited amounts of
training data. We observe that as training data increases, the benefits obtained from this penalty
diminish, in accordance with our results. Contrary to Pereyra et al. [19], our demonstrated improve-
ments are larger, substantiating the applicability of entropy-based regularization in data-constrained
classification tasks.

2 Method

2.1 Motivation

The motivation behind the formulation for entropy regularization stems from penalizing the peakiness
of the output probability distribution, that is, we require the conditional probability distribution
pθ(y|x) produced as output by the network for an input sample x (under model with parameters θ)
to have mass distributed across the alphabet of Y , that is, across several classes. Peaky distributions
have lower entropy [8], and it is evident that we obtain maximum entropy when all events are equally
likely, i.e. there is no “surprise” in the observation.

Since fine-tuning a model trained on a large dataset on the target dataset is common practice in image
classification, the model used for prediction usually has a much higher capacity than the small target
dataset it is being fine-tuned on. This practice hence makes it very easy to overfit to the training data.
One method of performing regularization for this problem is early-stopping [20], which involves
ceasing training once validation performance begins decreasing. While effective, early-stopping
is often plagued by the issue deciding when the model has begun to overfit, and ameliorating that
requires keeping subsequent copies of the model, which can be memory intensive.

Additionally, if the available labels are corrupted by labeling noise, we cannot allow training until
convergence. For applications where the target classes have high similarity (e.g., fine-grained
recognition and classification), training with naive cross-entropy would imply that for each sample,
there is no noise present in its label, and only the specified label is present with certainty, consequently
leading to overfitting when training.

2.2 Formulation

As we specified earlier, a metric to regularize the confidence and increase confusion in output
distributions would increase the entropy of the output conditional probability distribution. Entropy
H(pθ(y|x)) for the conditional probability distribution pθ(y|x) can be given by:

H(pθ(y|x)) = −
N∑
i=1

pθ(yi|x) · log(pθ(yi|x)) (1)

We can maximize entropy by specifying our learning objective function L as:

L = Lce(pθ(y|x))− α ·H(pθ(y|x)) (2)

Where Lce denotes the prevalent cross-entropy loss. The new functional L promotes learning a
classifier with a maximum entropy output distribution (under suitable regularization parameter α),
while maintaining classification accuracy.
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Another interpretation of the same objective function can be drawn from measuring the divergence of
the conditional probability distribution from the uniform distribution. One frequently used measure
for estimating this metric, that can also be employed in the training of neural networks with cross-
entropy, is the Kullback-Leibler(KL) divergence [10]. The asymmetry of this metric gives rise to two
forms of regularization. If we write the KL-divergence of pθ(y|x) from the uniform distribution with
mean 1

N , denoted as U( 1
N ), we get:

DKL(pθ(y|x) ‖ U(
1

N
)) =

N∑
i=1

pθ(yi|x) · log
(pθ(yi|x)

N−1

)
(3)

= logN +

N∑
i=1

pθ(yi|x) · log pθ(yi|x) (4)

= logN −H(pθ(y|x)) (5)

Hence, we can see that maximizing the entropy H is identical to minimizing one direction of KL-
divergence of the output conditional probability distribution from the uniform distribution. Reversing
the direction of the divergence yields the label-smoothing regularization (LSR) [24], a technique
which involves altering the one-hot label vector to a smoother version, by replacing the mass at the
incorrect classes with 1

N instead of zero.

Label Smoothing Regularization provides small increases in performance [24], which are limited
since it confuses the classifier with all classes equally. Regularizing entropy, however, confuses the
classifier with its own predictions, which is informative in situations where subsets of classes are
confusing, since we would want to penalize the classifier for predictions only within a subset. We
argue that the mean-seeking nature of LSR omits modes in the distribution that are captured by the
entropy formulation [17], i.e. we can expect an entropy regularized network to bootstrap from its
own predictions in the presence of label noise, as successfully utilized by Reed et al. [21]. Our final
objective for a batch of b training samples can be given by:

L =

b∑
i=1

(
Lce(pθ(y|x(i)),y(i))− α

b
·H(pθ(y|x(i)))

)
(6)

3 Experiments

We continue with the formulation described in Equation 6. We experiment with implementations
in popular libraries of Caffe [9] and PyTorch [18], over a cluster of NVIDIA TITAN X and GTX
1080 GPUs. We design experiments specifically to support our claim on deep learning with limited
training data. We evaluate on a variety of deep learning model architectures, including AlexNet [13],
VGGNet-16 [23], GoogLeNet [24] and ResNets [7]. We select the hyperparameter α via cross-
validation, and present a short analysis of the effect of variation and selection of the hyperparameter
on prediction performance as well.

3.1 Limited Data CIFAR-10 and CIFAR-100

Our first set of experiments include the classic image classification dataset of CIFAR-10 [12] and
CIFAR-100 [12]. CIFAR-10 has 10 target classes, with 5000 samples per class, and CIFAR-100
consists of 100 classes and 500 samples per class. It is critical to note that the number of training
samples per class for CIFAR-10 is much higher than that even of ImageNet [5], and hence we
experiment with very small fractions of the dataset, in order to match dataset sizes present in domains
with limited training data. We progressively experiment training models with randomly selected
subsets of the training data and observing the gain in test performance.

As hypothesized, we observe an increase in validation accuracy with limited amounts of training data
in both cases, that reduces as the amount of training data available increases. In case of CIFAR-10,
we observe no significant performance increase (consistent with [19]) when trained using the entire
training dataset, however, as depicted in Table 1, for small amounts of training data (1% to 10%)
we observe a performance increase as large as 6%. These improvements are present across several
model architectures (see Figure 1a and Table 1). We also observe that the gains reduce when using
complete training data—with no significant improvement in CIFAR-10 and a gain of 1% to 3% on
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Method Accuracy(%) on CIFAR-10 Accuracy(%) on CIFAR-100
1% 2% 5% 10% 100% 1% 2% 5% 10% 100%

ResNet20 [7] 29.98 35.19 43.54 51.25 92.34 19.45 25.78 33.91 36.16 75.81
ResNet20 (E) 32.75 39.95 45.90 54.89 92.57 21.06 27.35 36.08 42.12 77.40
VGGNet16 [23] 30.18 36.02 41.78 50.21 92.06 18.19 22.35 30.16 35.46 73.81
VGGNet16 (E) 33.51 40.68 46.11 55.62 92.17 20.05 23.39 34.08 40.20 75.08
GoogLeNet [24] 26.15 33.57 38.10 46.18 84.16 17.90 20.38 25.34 30.19 70.24
GoogLeNet (E) 30.14 36.15 42.25 50.19 84.19 19.17 23.65 28.86 34.01 73.15

Table 1: The impact of adding entropy regularization on classification for random subsets of CIFAR-
10 and CIFAR-100 datasets. The models trained with entropy regularization are displayed with the
tag (E).

CIFAR-100. This can be attributed to the fact that as more training data becomes available, the
training data approximates the validation data more precisely, alleviating the need to account for
confusion (or penalize peakiness).

3.2 Fine-Grained Visual Classification

Fine-Grained Visual Classification (FGVC) is an important problem in computer vision, which
involves distinguishing between object classes with substantially higher visual similarity compared
to those in large-scale image classification tasks. Some examples of FGVC include differentiating
between species of birds, flowers and animals; or the brands and models of vehicles. These tasks
depart from conventional image classification in that they require expert knowledge, rather than
crowdsourcing, for gathering annotations. Additionally for fine-grained wildlife data collection,
several species are generally harder to photograph, resulting in long tails in the data distribution.
Owing to the difficulty in capturing and annotating samples, most FGVC datasets are orders of
magnitude smaller than traditional image classification datasets, making it harder to learn deep
learning classifiers on such data.

Method Accuracy(%) on FGVC Dataset
CUB-2011 [26] Stanford Dogs [11] NABirds [1]

GoogLeNet [24] 68.19 (± 0.14) 55.76 (± 0.08) 70.66 (± 0.28)
GoogLeNet (E) 74.37 (± 0.19) 61.98 (± 0.16) 71.15 (± 0.19)
VGGNet16 [23] 73.30 (± 0.22) 61.87 (± 0.25) 68.29 (± 0.31)
VGGNet16 (E) 77.91 (± 0.17) 65.56 (± 0.23) 72.66 (± 0.23)
ResNet50 [7] 76.15 (± 0.18) 69.92 (± 0.16) 63.55 (± 0.15)
ResNet50 (E) 81.24 (± 0.28) 74.31 (± 0.31) 70.84 (± 0.18)
BilinearCNN [14] 84.10 (± 0.12) 82.13 (± 0.22) 80.90 (± 0.16)
BilinearCNN (E) 84.93 (± 0.15) 83.04 (± 0.14) 81.14 (± 0.12)

Table 2: The impact of adding entropy regularization on classification for fine-grained visual classi-
fication datasets. All models have been fine-tuned from their publicly available ImageNet-trained
weights. The models trained with entropy regularization are displayed with the tag (E).

Our results for FGVC tasks are summarized in Table 2. We observe gains larger than the previous
set of experiments, especially on generic models such as GoogLeNet [24], VGGNet16 [23] and
ResNet50 [7]. We additionally observe an improvement on specialized FGVC deep models, such as
Bilinear-CNN [14] across 3 datasets (CUB-2011 [26], Stanford Dogs [11], NABirds [1]).

4 Analysis and Conclusion

In this paper, we demonstrated the impact of regularizing entropy for tasks involving learning with
limited amounts of training data. Since we are adding a regularizer, it would be critical to understand
the variation of performance with variation in the hyperparameter. We find that for smaller amounts of
data present, larger values of α provide benefits in classification, but overall we find that the algorithm
is largely insensitive to different values of α in the range of 0 to 1. This variation in performance is
summarized for CIFAR-10 in Figure 1a.
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Figure 1: (a) Analysis of variation of classification performance as training data is increased, plotted for various
values of α, on CIFAR10 with model ResNet20. (b) Eigenvalue decomposition of covariance (unnormalized
PCA) of penultimate layer GoogLeNet features for both training and test sets of CUB2011. We plot the value of
log(αi) for the ith eigenvalue αi obtained after decomposition of test set (dashed) and training set (solid) on
three models.

Subsequently, it is also interesting to visualize what the effect of regularizing entropy is on the
underlying feature maps. Adding entropy to the classifier will encourage the classifier to reduce the
specificity of the features, since we discourage peakiness in the output distribution. To evaluate this
hypothesis, we perform the eigendecomposition of the covariance matrix (unnormalized PCA) on
the penultimate layer features of GoogLeNet trained on CUB-2011, and analyze the trend of sorted
eigenvalues (Figure 2b). We examine the features obtained from a network with (i) no fine-tuning
(“Basic”), (ii) fine-tuning without regularization, and (iii) fine-tuning with entropy regularization.

For a feature matrix with large covariance between the features of different classes, we would
expect the first few eigenvalues to be large, and the rest to diminish quickly, since fewer orthogonal
components can summarize the data. Conversely, in a completely uncorrelated feature matrix, we
would see a larger tail in the decreasing magnitudes of eigenvalues. Figure 1b shows that for the
Basic features (with no fine-tuning), there is a fat tail in both training and test sets due to the presence
of a large number of uncorrelated features. After fine-tuning on the training data, we observe a
reduction in the tail of the curve, implying that some generality in features has been introduced in
the model through the fine-tuning. The test curve follows a similar decrease, justifying the increase
in test accuracy. Finally, for entropy regularization, we observe a substantial decrease in the width
of the tail of eigenvalue magnitudes, suggesting a larger increase in generality of features in both
training and test sets, which confirms our hypothesis.

In conclusion, we demonstrate the effectiveness of regularizing entropy when training deep neural
network models with limited amounts of training data. Our work should be useful in improving
generalization performance of the large number of applied computer vision tasks that utilize deep
neural networks for training with small amounts of data, including medical imaging, fine-grained
recognition, and domain adaptation.

Acknowledgements: The authors would like to thank Ryan Farrell and Pei Guo for their helpful
comments and discussions.

References
[1] Steve Branson, Grant Van Horn, Serge Belongie, and Pietro Perona. Bird species categorization

using pose normalized deep convolutional nets. arXiv preprint arXiv:1406.2952, 2014.

[2] Hao Chen, Xiaojuan Qi, Lequan Yu, Qi Dou, Jing Qin, and Pheng-Ann Heng. Dcan: Deep
contour-aware networks for object instance segmentation from histology images. Medical image
analysis, 36:135–146, 2017.

[3] Sumit Chopra, Suhrid Balakrishnan, and Raghuraman Gopalan. Dlid: Deep learning for domain
adaptation by interpolating between domains.

5



[4] Brian Chu, Vashisht Madhavan, Oscar Beijbom, Judy Hoffman, and Trevor Darrell. Best
practices for fine-tuning visual classifiers to new domains. In Computer Vision–ECCV 2016
Workshops, pages 435–442. Springer, 2016.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09, 2009.

[6] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. Decaf: A deep convolutional activation feature for generic visual recognition.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for im-
age recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[8] Edwin T Jaynes. Information theory and statistical mechanics. Physical review, 106(4):620,
1957.

[9] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross Girshick,
Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM international conference on Multimedia, pages
675–678. ACM, 2014.

[10] James M Joyce. Kullback-leibler divergence. In International Encyclopedia of Statistical
Science, pages 720–722. Springer, 2011.

[11] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs.

[12] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset, 2014.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing systems, pages
1097–1105, 2012.

[14] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained
visual recognition. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1449–1457, 2015.

[15] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso Setio, Francesco
Ciompi, Mohsen Ghafoorian, Jeroen AWM van der Laak, Bram van Ginneken, and Clara I
Sánchez. A survey on deep learning in medical image analysis. arXiv preprint arXiv:1702.05747,
2017.

[16] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

[17] Tom Minka et al. Divergence measures and message passing. Technical report, Technical report,
Microsoft Research, 2005.

[18] Adam Paskze and Soumith Chintala. Tensors and Dynamic neural networks in Python with
strong GPU acceleration. https://github.com/pytorch. Accessed: [August 1, 2017].

[19] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz Kaiser, and Geoffrey Hinton. Reg-
ularizing neural networks by penalizing confident output distributions. arXiv preprint
arXiv:1701.06548, 2017.

[20] Lutz Prechelt. Early stopping-but when? Neural Networks: Tricks of the trade, pages 553–553,
1998.

[21] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew
Rabinovich. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint
arXiv:1412.6596, 2014.

6

https://github.com/pytorch


[22] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. Cnn features
off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition workshops, pages 806–813, 2014.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[24] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
1–9, 2015.

[25] Nima Tajbakhsh, Jae Y Shin, Suryakanth R Gurudu, R Todd Hurst, Christopher B Kendall,
Michael B Gotway, and Jianming Liang. Convolutional neural networks for medical image
analysis: Full training or fine tuning? IEEE transactions on medical imaging, 35(5):1299–1312,
2016.

[26] Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The
caltech-ucsd birds-200-2011 dataset. 2011.

[27] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Antonio Torralba, and Aude Oliva. Places: An
image database for deep scene understanding. arXiv preprint arXiv:1610.02055, 2016.

7


	Introduction
	Method
	Motivation
	Formulation

	Experiments
	Limited Data CIFAR-10 and CIFAR-100
	Fine-Grained Visual Classification

	Analysis and Conclusion

