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Abstract

We describe an approach to learning from long-tailed, imbalanced datasets that
are prevalent in real-world settings. Here, the challenge is to learn accurate “few-
shot” models for classes in the tail of the class distribution, for which little data
is available. We cast this problem as transfer learning, where knowledge from
the data-rich classes in the head of the distribution is transferred to the data-poor
classes in the tail. Our key insights are as follows. First, we propose to transfer
meta-knowledge about learning-to-learn from the head classes. This knowledge is
encoded with a meta-network that operates on the space of model parameters, that
is trained to predict many-shot model parameters from few-shot model parameters.
Second, we transfer this meta-knowledge in a progressive manner, from classes
in the head to the “body”, and from the “body” to the tail. That is, we transfer
knowledge in a gradual fashion, regularizing meta-networks for few-shot regression
with those trained with more training data. This allows our final network to capture
a notion of model dynamics, that predicts how model parameters are likely to
change as more training data is gradually added. We demonstrate results on
image classification datasets (SUN, Places, and ImageNet) tuned for the long-tailed
setting, that significantly outperform common heuristics, such as data resampling
or reweighting.

1 Motivation

Deep convolutional neural networks (CNNs) have revolutionized the landscape of visual recognition,
through the ability to learn “big models” with hundreds of millions of parameters [1, 2, 3, 4]. Such
models are typically learned with artificially balanced datasets [5, 6, 7], in which objects of different
classes have approximately evenly distributed, very large number of human-annotated images. In
real-world applications, however, visual phenomena follow a long-tailed distribution as shown in
Fig. 1, in which the number of training examples per class varies significantly from hundreds or
thousands for head classes to as few as one for tail classes [8, 9, 10].

Long-tail: Minimizing the skewed distribution by collecting more tail examples is a notoriously
difficult task when constructing datasets [11, 6, 12, 10]. Even those datasets that are balanced along
one dimension still tend to be imbalanced in others [13]; e.g., balanced scene datasets still contain
long-tail sets of objects [14] or scene subclasses [8]. This intrinsic long-tail property poses a multitude
of open challenges for recognition in the wild [15], since the models will be largely dominated by
those few head classes while degraded for many other tail classes. Rebalancing training data [16, 17]
is the most widespread state-of-the-art solution, but this is heuristic and suboptimal — it merely
generates redundant data through over-sampling or loses critical information through under-sampling.

Head-to-tail knowledge transfer: An attractive alternative is to transfer knowledge from data-rich
head classes to data-poor tail classes. While transfer learning [18, 19, 20] from a source to target
task is a well studied problem [18, 21], by far the most common approach is fine-tuning a model
pre-trained on the source task [22]. In the long-tailed setting, this fails to provide any noticeable
improvement since pre-training on the head is quite similar to training on the unbalanced long-tailed
dataset (which is dominated by the head) [10].
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(a) Long-tail distribution on the SUN-397 dataset.
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(b) Knowledge transfer from head to tail classes.

Figure 1: Head-to-tail knowledge transfer in model space for long-tail recognition. Fig. 1a shows
the number of examples by scene class on SUN-397 [14], a representative dataset that follows an
intrinsic long-tailed distribution. In Fig. 1b, from the data-rich head classes (e.g., living rooms), we
introduce a meta-learner F to learn the model dynamics — a series of transformations (denoted
as solid lines) that represents how few k-shot models θk start from θ1 and gradually evolve to the
underlying many-shot models θ∗ trained from large sets of samples. The model parameters θ are
visualized as points in the “dual” model (parameter) space. We leverage the model dynamics as prior
knowledge to facilitate recognizing tail classes (e.g., libraries) by hallucinating their model evolution
trajectories (denoted as dashed lines).

Transferring meta-knowledge: Inspired by the recent work on meta-learning [23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37], we instead transfer meta-level knowledge about learning to learn
from the head classes. Specifically, we make use of the approach of [23], which describes a method
for learning from small datasets (the “few-shot” learning problem [20, 38, 39, 40, 41, 42, 43, 44, 23,
45, 24, 46, 47, 48, 41, 49, 50, 51, 52, 53, 54]) through estimating a generic model transformation. To
do so, [23] learns a meta-level network that operates on the space of model parameters, which is
specifically trained to regress many-shot model parameters (trained on large datasets) from few-shot
model parameters (trained on small datasets). Our meta-level regressor, which we call MetaModelNet,
is trained on classes from the head and then applied to those from the tail. As an illustrative example
in Fig. 1, consider learning scene classifiers on a long-tailed dataset with many living-rooms but few
outside libraries. We learn both many-shot and few-shot living-room models (by subsampling the
training data as needed), and train a regressor that maps between the two. We can then apply the
regressor on few-shot models of libraries learned from the tail.

Progressive transfer: The above description suggests that we need to split up a long-tailed training
set into a distinct set of source classes (the head) and target classes (the tail). This is most naturally
done by thresholding the number of training examples per class. But what is the correct threshold?
A high threshold might result in a meta-network that simply acts as an identity function, returning
the input set of model parameters. This certainly would not be useful to apply on few-shot models.
Similarly, a low threshold may not be useful when regressing from many-shot models. Instead,
we propose a “continuous” strategy that builds multiple regressors across a (logarithmic) range of
thresholds (e.g., 1-shot, 2-shot, 4-shot regressors, etc.), corresponding to different head-tail splits.
Importantly, these regressors can be efficiently implemented with a single, chained MetaModelNet
that is naturally regularized with residual connections, such that the 2-shot regressor need only predict
model parameters that are fed into the 4-shot regressor, and so on (until the many-shot regressor
that defaults to the identity). By doing so, MetaModelNet encodes a trajectory over the space of
model parameters that captures their evolution with increasing sample sizes, as shown in Fig. 1b.
Interestingly, such a network is naturally trained in a progressive manner from the head towards the
tail, effectively capturing the gradual dynamics of transferring meta-knowledge from data-rich to
data-poor regimes.

Model dynamics: It is natural to ask what kind of dynamics are learned by MetaModelNet. How can
one consistently predict how model parameters will change with more training data? We posit that
the network learns to capture implicit data augmentation. For example, given a 1-shot model trained
with a single image, the network may learn to implicitly add rotations of that single image. But rather
than explicitly creating data, MetaModelNet predicts their impact on the learned model parameters.

Our contributions are three-fold. (1) We analyze the dynamics of how model parameters evolve
when given access to more training examples. (2) We show that a single meta-network, based on deep
residual learning, can learn to accurately predict such dynamics. (3) We train such a meta-network on
long-tailed datasets through a recursive approach that gradually transfers meta-knowledge learned
from the head to the tail, significantly improving long-tail recognition on a broad range of tasks.
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Figure 2: MetaModelNet architecture for learning model dynamics. We instantiate MetaModelNet
as a deep residual network with residual blocks i = 0, 1, . . . , N in Fig. 2a, which accepts few-shot
model parameters θ (trained on small datasets across a logarithmic range of sample sizes k, k = 2i)
as (multiple) inputs and regresses them to many-shot model parameters θ∗ (trained on large datasets)
as output. The skip connections ensure the identity regularization. Fi denotes the meta-learner that
transforms (regresses) k-shot θ to θ∗. Fig. 2b shows the structure of the residual blocks. Note that
the meta-learners Fi for different k are derived from this single, chained meta-network, with nested
circles (subnetworks) corresponding to Fi.

2 Head-to-tail meta-knowledge transfer

Given a long-tail recognition task of interest and a base recognition model such as a deep CNN, our
goal is to transfer knowledge from the data-rich head to the data-poor tail classes. As shown in Fig. 1,
knowledge is represented as trajectories in model space that capture the evolution of parameters with
more and more training examples. We train a meta-learner (MetaModelNet) to learn such model
dynamics from the head classes, and then “hallucinate” the evolution of parameters for the tail classes.
To simplify exposition, we first describe the approach for a fixed split of our training dataset into a
head and tail. We then generalize the approach to multiple splits.

Fixed-size model transformations: Let us write Ht for the “head” training set of (x, y) data-label
pairs constructed by assembling those classes for which there exists more than t training examples. We
will use Ht to learn a meta-network thats maps few-shot model parameters to many-shot parameters,
and then apply this network on few-shot models from the tail classes. To do so, we closely follow
the model regression framework from [23], but introduce notation that will be useful later. Let
us write a base learner as g(x; θ) as a feedforward function g(·) that processes an input sample x
given parameters θ. We first learn a set of “optimal” model parameters θ∗ by tuning g on Ht with a
standard loss function. We also learn few-shot models by randomly sampling a smaller fixed number
of examples per class from Ht. We then train a meta-network F(·) to regress few-shot parameters
to θ∗, where F(·) is itself parameterized with weights w. We focus on parameters from the last
fully-connected layer for a single class — e.g., θ ∈ R4096 for an AlexNet architecture. This allows us
to learn regressors that are shared across classes (as in [23]), and so can be applied to any individual
test class. The objective function for each class is:

∑
θ∈kShot(Ht)

{
||F(θ;w)− θ∗||2 + λ

∑
(x,y)∈Ht

loss
(
g
(
x;F(θ;w)

)
, y
)}
. (1)

The final loss is averaged over all the head classes and minimized with respect to w. Here, kshot(Ht)
is the set of few-shot models learned by subsampling Ht, and loss refers to the performance loss used
to train the base network (e.g., cross-entropy). [23] found that the performance loss was useful to
learn regressors that maintained high accuracy on the base task.

Training: What should be the value of k, for the k-shot models being trained? One might be tempted
to set k = t, but this implies that there will be some head classes near the cutoff that have only
t training examples, implying θ and θ∗ will be identical. To ensure that a meaningful mapping is
learned, we set k = t/2.

Recursive residual transformations: We wish to apply the above module on all possible head-tail
splits of a long-tailed training set. To do so, we extend the above approach in three crucial ways:

• (Sample-size dependency) Generate a sequence of different meta-learners Fi each tuned for
a specific k, where k = k(i) is an increasing function of i (that will be specified shortly).
Through a straightforward extension, prior work on model regression [23] learns a single
fixed meta-learner for all the k-shot regression tasks.
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• (Identity regularization) Ensure that the meta-learner defaults to the identity function for
large i: Fi → I as i→∞.

• (Compositionality) Compose meta-learners out of each other: ∀i < j, Fi(θ) = Fj
(
Fij(θ)

)
where Fij is the regressor that maps between k(i)-shot and k(j)-shot models.

Here we dropped the explicit dependence of F(·) on w for notational simplicity. These observations
emphasize the importance of (1) the identity regularization and (2) sample-size-dependent regressors
for long-tailed model transfer. We operationalize these extensions with a recursive residual network:

Fi(θ) = Fi+1

(
θ + f(θ;wi)

)
, (2)

where f denotes a residual block parameterized by wi and visualized in Fig. 2b. Inspired by [55, 23],
f consists of batch normalization (BN) and leaky ReLU as pre-activation, followed by fully-connected
weights. By construction, each residual block transforms an input k(i)-shot model to a k(i+ 1)-shot
model. The final MetaModelNet can be efficiently implemented through a chained network of N + 1
residual blocks, as shown in Fig. 2a. By feeding in a few-shot model at a particular block, we can
derive any meta-learner Fi from the central underlying chain.

Training: Given the network structure defined above, we now describe an efficient method for
training based on two insights. (1) The recursive definition of MetaModelNet suggests a recursive
strategy for training. We begin with the last block and train it with the largest threshold (e.g., those
few classes in the head with many examples). The associated k-shot regressor should be easy to
learn because it is similar to an identity mapping. Given the learned parameters for the last block, we
then train the next-to-last block, and so on. (2) Inspired by the general observation that recognition
performance improves on a logarithmic scale as the number of training samples increases [8, 9, 56],
we discretize blocks accordingly, to be tuned for 1-shot, 2-shot, 4-shot, ... recognition. In terms of
notation, we write the recursive training procedure as follows. We iterate over blocks i from N to 0,
and for each i:

• Using Eqn. (1), train parameters of the residual block wi on the head split Ht with k-shot
model regression, where k = 2i and t = 2k = 2i+1.

The above “back-to-front” training procedure works because whenever block i is trained, all subse-
quent blocks (i+1, . . . , N) have already been trained. In practice, rather than holding all subsequent
blocks fixed, it is natural to fine-tune them while training block i. One approach might be fine-tuning
them on the current k = 2i-shot regression task being considered at iteration i. But because Meta-
ModelNet will be applied across a wide range of k, we fine-tune blocks in a multi-task manner across
the current viable range of k = (2i, 2i+1, . . . , 2N ) at each iteration i.

3 Experimental Evaluation

Evaluation and analysis on SUN-397: We first focus on fine-tuning the classifier module while
freezing the representation module of a pre-trained ResNet152 CNN model [4] on long-tailed SUN-
397 [14, 57] for its state-of-the-art performance. In addition to the “plain” baseline that fine-tunes on
the target data following the standard practice, we compare against three state-of-the-art baselines
that are widely used to address the imbalanced distributions. (1) Over-sampling [16, 17], which uses
the balanced sampling via label shuffling as in [16, 17]. (2) Under-sampling [58], which reduces
the number of samples per class to 47 at most (the median value). (3) Cost-sensitive [59], which
introduces additional weights in the loss function for each class with inverse class frequency.

Table 1 summarizes the performance comparison averaged over all classes and Fig. 3 details the per
class comparison. Table 1 shows that our MetaModelNet provides a promising way of encoding the
shared structure across classes in model space. It outperforms existing approaches by a large margin.
Fig. 3 shows that our approach significantly improves accuracy in the tail.

Ablation analysis: Table 2 shows that training for a fixed sample size and identity regularization
provide a noticeable performance boost (2%). Adding multiple head-tail splits through recursion
further improves accuracy by a small but noticeable amount (0.5% as shown in Table 2). Table 3
shows that progressively learning classifier dynamics while fine-tuning features performs the best
when using ResNet50 [4].

Understanding model dynamics: Fig. 4 shows some empirical analysis of model dynamics.
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Method Plain [4] Over-Sampling [16, 17] Under-Sampling [58] Cost-Sensitive [59] MetaModelNet (Ours)
Acc (%) 48.03 52.61 51.72 52.37 57.34

Table 1: Performance comparison between our MetaModelNet and state-of-the-art approaches for
long-tailed scene classification when fine-tuning the pre-trained ILSVRC ResNet152 on the SUN-397
dataset. We focus on learning the model dynamics of the classifier module while freezing the CNN
representation module. By benefiting from the learned generic model dynamics from the head classes,
ours significantly outperforms all the baselines for the long-tail recognition.

Method Model Regression [23] MetaModelNet+Fix Split (Ours) MetaModelNet+ Recur Split (Ours)
Acc (%) 54.68 56.86 57.34

Table 2: Ablation analysis of variations of our MetaModelNet.

Scenario Pre-Trained Features Fine-Tuned Features (FT)
Method Plain [4] MetaModelNet (Ours) Plain [4] Fix FT + MetaModelNet (Ours) Recur FT + MetaModelNet (Ours)
Acc (%) 46.90 54.99 49.40 58.53 58.74

Table 3: Ablation analysis of joint feature fine-tuning and model dynamics learning.

Dataset Places-205 [7] ILSVRC-2012 [5]
Method Plain [1] MetaModelNet (Ours) Plain [1] MetaModelNet (Ours)
Acc (%) 23.53 30.71 68.85 73.46

Table 4: Performance comparisons on large-scale scene-centric Places [7] and object-centric Ima-
geNet [5] datasets, which are tuned for the long-tailed setting.
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Figure 4: Visualizing model dynamics. We visualize
models as points in the “dual” model (parameter) space
and examine the evolution of parameters predicted by
MetaModelNet with t-SNE [60]. 1-shot models (purple)
to many-shot models (red) are plotted in a rainbow order.
These visualizations show that MetaModelNet learns an
approximately-smooth, nonlinear warping of this space
that transforms (few-shot) input points to (many-shot)
output points. Similar semantic classes tend to be close
and transform in similar ways.

Generalization to other tasks and datasets: Table 4 shows the generality of our approach and shows
that the MetaModelNets facilitate the recognition of other long-tailed datasets with significantly
different visual concepts and distributions.

4 Conclusions

In this work we proposed a conceptually simple but powerful approach to address the problem of
long-tail recognition through knowledge transfer from the head to the tail of the class distribution.
Our key insight is to represent the model dynamics through meta-learning, i.e., how a recognition
model transforms and evolves during the learning process when gradually encountering more training
examples. To do so, we introduce a meta-network that learns to progressively transfer meta-knowledge
from the head to the tail classes. We present several state-of-the-art results on benchmark datasets
(SUN, Places, and ImageNet) tuned for the long-tailed setting, that significantly outperform common
heuristics, such as data resampling or reweighting.
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