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Abstract

We investigate the task of classifier training for data sets with limited labels using
a neural network derived from a hierarchical normalized Poisson mixture model.
With the single objective of likelihood optimization, both labeled and unlabeled
data are naturally incorporated into learning. Using standard benchmarks for non-
negative data, such as text document representations (20 Newsgroups), MNIST and
NIST SD19, we study the classification performance when only very few labels
are used for training and parameter tuning. In different settings, the network’s
performance is compared to standard and recently suggested semi-supervised
classifiers. While other recent approaches are more competitive for many labels
or fully labeled data sets, we find that the here studied network can be applied to
limits of few labels where no other system has been reported to operate so far.

1 Introduction

Large data sets, e.g., in the form of digital texts, images or sounds, become increasingly ubiquitous.
However, acquisition of fully labeled data becomes increasingly costly with larger amounts of
data points, as correct labeling requires ground-truth or a human who can hand-label the data.
Consequently, classifiers leveraging information from both labeled and unlabeled data have in recent
years shifted into the focus of many research groups (Liu et al., 2010; Weston et al., 2012; Pitelis et al.,
2014; Kingma et al., 2014; Forster et al., 2015; Rasmus et al., 2015; Miyato et al., 2015). Typically,
a supervised deep neural network (DNN) is used in combination with additional mechanisms that
allow usability when labels are limited. However, such systems generally come with large numbers
of free parameters, which in the semi-supervised setting increases the risk of overfitting to very small
validation sets. Alternatively, standard probabilistic networks, e.g., in the form of deep directed
graphical models (DDMs) can in principle be trained using unlabeled and labeled data. However,
while being potentially very powerful information processors, typical directed models are limited in
size (compare, e.g. Larochelle and Murray, 2011; Bornschein and Bengio, 2015; Gan et al., 2015).

In contrast to DNNs and SVMs, DDMs are primarily used for unsupervised learning. For the targeted
limit of few labels, DDMs thus appear as a more natural starting point if we are able to address
scalability for classification applications. In order to do so, we base our study on a directed graphical
model which is sufficiently richly structured to give rise to a good classifier, while it allows for
efficient training on large data sets and with large network sizes. Scalability will be realized by
the derivation of a neural network equivalent for maximum likelihood learning of the considered
graphical model. The emerging compact and local inference and learning equations of the network
can then be parallelized and scaled using the same tools as were originally developed for conventional
deep neural networks. By additionally considering a minimalistic network architecture, the number
of free parameters will, at the same time, be kept low and easily tunable on few labels.
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2 A Hierarchical Neural Network for Learning with Limited Labels

A classification problem can be modeled as an inference task based on a probabilistic hierarchical
mixture model (e.g., Duda et al., 2001). For our goal of semi-supervised learning with limited labels,
we restrain the model complexity to the minimum of no more than three layers:

p(k) = 1/K, p(l|k) = δlk (1)
p(c|k,R) = Rkc,

∑
cRkc = 1 (2)

p(~y |c,W) =
∏

d Poisson(yd;Wcd),
∑

dWcd = A (3)

The parameters of the model,W∈RC×D
>0 andR∈RK×C

≥0 , will be referred to as generative weights,
which are normalized to constants A and 1, respectively. The top node represents K abstract concepts
or super classes k (for example, ten classes of digits). The middle node represents any of the occurring
C subclasses c (like different writing styles of the digits). And the bottom nodes represent an observed
data sample ~y with an according data label l (e.g., ranging from ‘0’ to ‘9’). Our model assumes
non-negative observed data, and we use the Poisson distribution as an elementary distribution for
non-negative observations.

For the purposes of this study, we specify a neural network formulation that corresponds to learning
and inference in this hierarchical generative model. Consider the neural network in Fig. 1 with
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Figure 1: Graphical illustration of the
hierarchical recurrent neural network.

neural activities ~y, ~s and ~t and learning rules as in
Tab. 1. We assume the values of ~y to be obtained from
a set of unnormalized data points ~̃y by Eq. (T1.3), and
the label information to be presented as top-down in-
put vector ~u as given in Eq. (T1.2). For the neural
weights (W,R) of the network, we consider Hebbian
learning with a subtractive synaptic scaling term (see
for example Abbott and Nelson, 2000) as in Eqs. (T1.7)
and (T1.8), where εW > 0 and εR > 0 are learn-
ing rates. These learning rules are local, can inte-
grate both supervised and unsupervised learning, are
highly parallelizable and they result in normalized neu-
ral weights (W,R). Those we can relate to the gener-
ative weights (W,R) by identifying sc with the poste-
rior probability p(c|~y (n), l(n), Θ) by Eq. (T1.4) and tk with p(k|~y (n), l(n), Θ) by Eq. (T1.6), using
the neural weights as model parameters Θ. Such neural learning converges to the same fixed
points as EM for the hierarchical Poisson mixture model (compare Lücke and Sahani, 2008;
Keck et al., 2012; Forster et al., 2015; Forster and Lücke, 2017). In other words, executing

Table 1: Neural network formulation of probabilistic
inference and maximum likelihood learning.

Neural Simpletron
Input

Bottom-Up: ỹd unnormalized data (T1.1)

Top-Down: uk =

{
δkl for labeled data
1
K

for unlabeled data
(T1.2)

Activation Across Layers

Obs. Layer: yd = (A−D)
ỹd∑
d′ ỹd′

+ 1 (T1.3)

1st Hidden: sc =
exp(Ic)∑
c′ exp(Ic′ )

, with (T1.4)

Ic =
∑

d log(Wcd)yd + log(
∑

k ukRkc) (T1.5)

2nd Hidden: tk =

{
uk labeled data∑

c
Rkc∑
k′ Rk′c

sc unlabeled data
(T1.6)

Learning of Neural Weights

1st Hidden: ∆Wcd = εW(scyd − scWcd) (T1.7)

2nd Hidden: ∆Rkc = εR(tksc − tkRkc) labeled data (T1.8)

the online neural network of Tab. 1 opti-
mizes the likelihood of the generative model
Eqs. (1) to (3). The network’s neural activ-
ities therein provide the posterior probabil-
ities, which we use for classification with
the MAP estimate of tk (Eq. 1.6) giving the
inferred classes. The computation of poste-
riors is in general a difficult and computa-
tionally intensive endeavor, and their inter-
pretation as neural activation rules is usually
difficult. In our case, because of a specific in-
terplay between introduced constraints, cat-
egorical distribution and Poisson noise, the
posteriors and their neural interpretability
however greatly simplify. The equations
defining the neural network are elementary,
very compact, and contain a total number of
only four free parameters: the number of hid-
den units C, an input normalization constant
A, and learning rates εW and εR . Because of
its compactness, we call the network Neural
Simpletron (NeSi).

2



2.1 Simpletron Variants

We investigate different NeSi versions for learning with limited labels. All variants accord with the
likelihood objective and were chosen such that the number of tunable parameters remains small:
(I) The complete formulas for the first hidden layer, given in Eqs. (T1.4) and (T1.5), define a recurrent
network (‘r-NeSi’), i.e., combine both bottom-up and top-down information. By removing the second
term in Eq. (T1.5), we gain a feedforward network (‘ff-NeSi’) that is equivalent to treating the
p(c|k,R) in the first hidden layer as uniform 1/C. (II) Using the posterior tk, the network can itself
provide missing training labels (often termed ‘self-labeling’; see, e.g., Lee, 2013; Triguero et al.,
2015) and the ‘Best versus Second Best’ (BvSB) measure on tk gives an index for classification
certainty. We then train the top layer also on those inferred labels with high certainty, i.e., where the
BvSB lies above a given threshold ϑ. We mark NeSi networks using self-labeling by a superscript ‘+’
(‘r+-NeSi’ and ‘ff+-NeSi’). (III) We apply TV-EM (Lücke, 2016) to ff+-NeSi by keeping only the C ′
highest values in sc (Eq. T1.4) and setting lower values to hard zero with subsequent renormalization.
Such truncation can be shown to maximize the variational free energy of the mixture model with
a significantly lower computational cost (Forster and Lücke, 2017). We refer to simpletrons with
truncated middle layer activations as ‘t-NeSi’. This represents a further development of the network
in Forster et al. (2015) with enhanced training and significantly improved results.

3 Parameter Tuning with Limited Labels

It is customary to regard limited numbers of labels as restriction only on training itself and not on
the preceding optimization of free model parameters by using validations sets with (much) more
labels than available during training. For model comparison, this however introduces a bias towards
more complex models, that would be otherwise more prone to overfitting to small validation sets.
We therefore train our models given a strictly limited total number of labels for the complete tuning
and training procedure. For parameter tuning, we use 10 labeled training data points per class (the
setting with the lowest number of labels on which models are generally compared on MNIST) with a
half/half split into training and validation set. Once optimized, we keep the free parameters fixed
for all following experiments. In doing so, we ensure that all our results of 10 labels per class and
more are achievable by using no more labels in total than provided within each training setting.
Furthermore, using only training data for parameter tuning guarantees a fully blind test set, such that
the test error gives a reliable index for generalization.

4 Numerical Experiments

We apply the NeSi networks to three standard benchmarks for classification on non-negative data: the
20 Newsgroups text data set (Lang, 1995), the MNIST data set of handwritten digits (LeCun et al.,
1998) and the NIST Special Database 19 of handwritten characters (Grother, 1995). We perform
experiments for different proportions of randomly chosen, class-balanced labeled data and measure
the mean classification error on the blind test set.

4.1 Document Classification (20 Newsgroups)

We preprocess the newsgroups data using only tf-idf weighting (Sparck Jones, 1972). No stemming,
removals of stop words or frequency cutoffs were applied. We investigate semi-supervised settings of
20, 40, 200, 800 and 2000 labels in total – that is 1, 2, 10, 40 and 100 labels per class – as well as the
fully labeled setting. For each setting, we present the mean test error averaged over 100 independent
runs and the standard error of the mean (SEM). On each new run, a new set of class balanced labels
is chosen randomly from the training set. We train our model on the full 20-class problem without
any feature selection.

Table 2: Test error on 20 Newsgroups.
#labels ff-NeSi r-NeSi HDRBM
20 70.64± 0.68 (∗) 68.68± 0.77 (∗)

40 55.67± 0.54 (∗) 54.24± 0.66 (∗)

200 30.59± 0.22 29.28± 0.21
800 28.26± 0.10 27.20± 0.07 31.8 (∗)

2000 27.87± 0.07 27.15± 0.07
11269 28.08± 0.08 17.85± 0.01 23.8

As reported results on the full 20-class task in the semi-
supervised setting are rare, we here only compare to a
hybrid of generative and discriminative RBMs (HDRBM)
trained by Larochelle and Bengio (2008) using stochastic
gradient descent to perform semi-supervised learning. The
test errors of the methods are compared in Tab. 2. For
results marked with ‘(∗)’, free parameters were optimized
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using additional labels: NeSi used the same parameter setting in all semi-supervised experiments
on 20 Newsgroups, which was tuned with 200 labels in total; HDRBM used 1000 labels in total for
tuning in the semi-supervised setting (200 additional labels for the validation set).

4.2 Handwritten Digit Recognition (MNIST)

We perform experiments on MNIST in the semi-supervised setting using 10, 100, 600, 1000 and
3000 labels in total – that is 1, 10, 60, 100 and 300 labels per class –, which are randomly and class
balanced chosen from the 10 classes. Results are given as the mean and standard error (SEM) over
100 independent repetitions, with randomly drawn, class-balanced labels.

Table 3: Test error of NeSi algorithms on permutation invari-
ant MNIST for different semi-supervised settings.
#labels ff-NeSi r-NeSi ff+-NeSi r+-NeSi t-NeSi
10 55.5± 0.6 (∗) 29.6± 0.6 (∗) 10.9± 0.9 (∗) 17.9± 0.9 (∗) 7.2± 0.5 (∗)

100 19.1± 0.3 12.4± 0.2 4.96± 0.08 4.93± 0.05 4.23± 0.07
600 7.27± 0.05 6.94± 0.05 4.08± 0.02 4.34± 0.01 3.65± 0.01
1000 5.88± 0.03 6.07± 0.03 4.00± 0.01 4.26± 0.01 3.63± 0.01
3000 4.39± 0.02 4.68± 0.02 3.85± 0.01 4.05± 0.01 3.52± 0.01
60000 3.27± 0.01 2.94± 0.01 3.27± 0.01 2.94± 0.01 2.94± 0.01

Tab. 3 shows the results of the
NeSi algorithms. Again, for results
marked with ‘(∗)’, the free parame-
ters were optimized using more la-
bels than available in the given set-
ting. We used the same parameter set-
ting for all experiments shown here,
which was tuned using 100 labels in
total. As the NeSi model has no prior
knowledge about spatial relations in the data, the given results are invariant to pixel permutation.

Fig. 2 shows a comparison to standard and recent state-of-the-art approaches for 100 labels and
more. The performance of the models is given with respect to the number of labels used during
training (left-hand side) and with respect to the total number of labels used for the complete tuning
and training procedure (right-hand side). For the NeSi algorithms, these plots are identical, as
we only use maximally as many labels in the tuning phase as in the training phase for the shown
results of 100 labels and more. All other algorithms (for lack of more comparable findings) either
use a validation set with a substantial amount of additional labels than available during training
or (explicitly) use the test set for parameter tuning. Also, some of the shown results (namely the
TSVM, AGR, AtlasRBF and the Em-networks) were achieved in the transductive setting, where the
(unlabeled) test data is included into the training process. The NeSi approaches are to our knowledge
so far the closest to our goal of a competitive algorithm in the limit of as few labels as possible.
Regarding classification performance, the NeSi networks achieve competitive results, surpassing
even deep belief networks (‘DBN-rNCA’) and other recent approaches (like the ‘Embed’-networks,
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Figure 2: Classification performance of different algorithms compared against varying propor-
tion of labeled training data. The algorithms are described in detail in the corresponding papers:
1Salakhutdinov and Hinton (2007), 2Liu et al. (2010), 3Weston et al. (2012), 4Bruna and Mallat
(2013). 5Pitelis et al. (2014), 6Kingma et al. (2014), 7Rasmus et al. (2015), 8Miyato et al. (2015). All
algorithms except ours use 1000 or 10 000 additional data labels (from the training or test set) for
parameter tuning. For ScatterCNN (Bruna and Mallat, 2013) the validation set size is not reported.
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‘AGR’ and ‘AtlasRBF’). In the light of reduced model complexity and effectively used labels, we can
furthermore compare to the few very recent algorithms with a lower error rate (‘M1+M2’, ‘VAT’ and
the ‘Ladder’-networks).

One competing model that so far comes closest to our limit setting of as few labels as possible is an
approach which combines 10 generative adversarial networks (GANs) (Salimans et al., 2016) with
5 layers each. With down to 20 labels for training (and an however unknown additional number of
labels for the validation set) the classification error of the full ensemble of 10 GANs the error was
reported to be (11.34± 4.45)%. This compares to an error of (7.22± 0.53)% for t-NeSi which was
trained with only 10 labels (one per class) and used 100 labels during parameter tuning.

4.3 Large Scale Handwriting Recognition (NIST SD19)

Table 4: Test error on NIST SD19 data set on the task of digit and
letter recognition for different total amounts of labeled data.
#lbls/class 1 10 60 100 300 fully labeled

digits (10 classes)
#lbls total 10 100 600 1000 3000 344 307
ff+-NeSi 7.6± 1.8 6.2± 0.2 6.0± 0.1 6.0± 0.1 5.70± 0.03 5.11± 0.01
r+-NeSi 9.8± 2.4 6.1± 0.2 5.8± 0.1 5.9± 0.1 5.7± 0.1 4.52± 0.01
t-NeSi 5.7± 0.4 5.3± 0.2 4.84± 0.02 4.86± 0.03 4.84± 0.02 4.50± 0.01
35c-MCDNN 0.77
letters (52 classes)
#lbls total 52 520 3120 5200 15600 387361
ff+-NeSi 55.7± 0.6 46.2± 0.4 44.2± 0.2 43.7± 0.2 43.0± 0.3 34.66± 0.05
r+-NeSi 65.0± 0.9 54.1± 0.4 43.7± 0.2 41.6± 0.1 38.0± 0.1 31.93± 0.06
t-NeSi 52.1± 1.1 45.6± 0.4 41.9± 0.3 41.8± 0.4 41.1± 0.3 33.34± 0.04
35c-MCDNN 21.01

To show large scale applica-
bility, we show experiments
on the NIST Special Database
19, containing over 800 000
binary 128× 128 images. We
preprocess the data similar to
MNIST, which allows us to
use the same setting for our
free model parameters with-
out retuning, and perform ex-
periments on digit recognition
(10 classes) and case-sensitive
letter recognition (52 classes).
The experiments are done us-
ing 1, 10, 60, 100, 300, or all labels per class. In Tab. 4, we report the mean and standard error over
10 experiments and compare to the state-of-the-art 35c-MCDNN (Cireşan et al., 2012). For the NeSi
networks, the results are given for the permutation invariant task. To the best of our knowledge, this
is the first system to report results for NIST SD19 in the semi-supervised setting.

5 Discussion

In this study, we explored classifier training on data sets with limited labels. We put a special
emphasize on adhering to this restriction not only for the training phase, but the complete tuning,
training and testing procedure. Our tool was a novel neural network with learning rules based on a
maximum likelihood objective. Starting from hierarchical Poisson mixtures, the derived three layer
directed data model can be observed to take on a form similar to learning in standard DNNs. The
parameters of the network can be optimized with a very limited amount of labels and training in
the same setting showed to achieve competitive results, giving the first network shown to operate
using no more than 10 labels per class in total and down to a single training label per class on the
investigated data sets.

Our main empirical results for the NeSi systems were obtained using the 20 Newsgroups, the MNIST
and the NIST SD19 datasets. Tabs. 2 to 4 and Fig. 2 summarize the results and provide comparison
to other approaches. The r-NeSi system is the best performing system for the 20 Newsgroups data
set (Tab. 2), but comparative results were only available for HDRBM in the semi-supervised setting.
Both on MNIST and NIST the performance of our 3-layer network in the fully labeled setting is
not competitive to state-of-the-art fully supervised algorithms. Our results however do apply for the
permutation invariant setting and do not take prior knowledge about two-dimensional image data into
account (like convolutional networks do). More importantly, we only see a relatively mild decrease
in test error when we strongly decrease the total number of used labels, with the t-NeSi consistently
performing best. It has so far not been shown that other classifiers can be trained with similarly low
total numbers of labels, as all comparable approaches use at least 1000 additional labels to optimize
the free parameters of their respective systems (Fig. 2, right-hand-side). Furthermore, as all better
performing approaches on MNIST combine different objectives to perform well with limited labels,
the NeSi networks can be considered as the best performing non-hybrid approaches even if we only
consider exclusively the labels for training (Fig. 2, left-hand-side).
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