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Abstract

Domain generalization is the problem of assigning labels to an unlabeled data set,
given several similar data sets for which labels have been provided. In this work,
we consider a kernel-based algorithm for domain generalization that was developed
in the binary setting. In particular, we show that the generalization error bound for
this algorithm extends to the multi-class setting. Our main contribution includes
generalization error analysis and a scalable implementation of the approach. We
demonstrate improved performance with respect to a pooling strategy on four data
sets.

1 Introduction

Transfer learning, domain adaptation, and weakly supervised learning all have the goal of generalizing
without access to conventional labeled training data. One particular form of transfer learning that has
garnered increasing attention in recent years is domain generalization (DG) [2, 3]. In this setting,
the learner is given unlabeled data to classify, and must do so by leveraging labeled data sets from
similar yet distinct classification problems. In other words, label training data drawn from the same
distribution as the test data are not available, but are available from several related tasks. We use the
terms “task" and “domain" interchangeably throughout this paper.

Applications of DG are numerous. For example, each task may be a prediction problem associated to
a particular individual (e.g., handwritten digit recognition), and the variation between individuals
accounts for the variation among the data sets. Domain generalization is needed when a new individual
appears, and the only training data come from different subjects.

As another application, below we consider DG for determining the orbits of microsatellites, which are
increasingly deployed in space missions for a variety of scientific and technological purposes. Because
of randomness in the launch process, the orbit of a microsatellite is random, and must be determined
after the launch. Furthermore, ground antennae are not able to decode unique identifier signals
transmitted by the microsatellites because of communication resource constraints and uncertainty in
satellite position and dynamics. More concretely, suppose c microsatellites are launched together.
Each launch is a random phenomenon and may be viewed as a task in our framework. One can
simulate the launch of microsatellites using domain knowledge to generate highly realistic training
data (feature vectors of ground antennae RF measurements, and labels of satellite ID). One can then
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transfer knowledge from the simulated training data to label (identify the satellite) the measurements
from a real-world launch with high accuracy.

Several approaches to domain generalization have been proposed, including complexity regularization
that adapts to the variability of the sampling distribution on tasks [2, 3, 21, 27], learning this sampling
distribution directly [5], task matching by optimal transport [8], learning a feature extractor that puts
all tasks in a common feature space [26, 25, 23, 28, 15, 13], and using the marginal distribution from
which a feature vector is drawn as a feature itself for label prediction [4].

Our work builds on the approach of [4], which develops a kernel-based framework for DG. We review
this framework below, and extend their analysis, which addresses the setting of binary labels, to the
multiclass setting. While several aspects of the original analysis in [4] carry over to the multiclass
case, others do not. In particular, we use an extension of the contraction lemma for Rademacher
complexity of Lipschitz loss classes to prove the generalization error bound [22].

A few existing approaches to DG address the multiclass case [8, 14, 24, 19, 16, 10]. Most of these
works rely on neural networks and none have statistical performance guarantees. We also note that
the approach of [4] can be combined with feature extraction approaches, as was done in [25], and the
same is true of our multiclass extension.

Our contributions include: (1) Extending the kernel-based approach to DG from [4] to multiclass
DG, (2) Extending the analysis of [4] to multiclass, (3) a scalable implementation based on random
Fourier features, and (4) experimental demonstration of the method compared to a pooling approach.

In section 2 we formally state the DG problem and in section 3 we describe the kernel-based learning
algorithm. Section 4 contains our theoretical analysis, and experimental results appear in section 5.

2 Formal Problem Statement

Let X be the feature space andY the label space with |Y| = c. Denote by PX×Y the set of probability
distributions on X ×Y, PX the set of probability distributions on X, and PY |X the set of conditional
distributions of Y given X . Furthermore, let µ be a probability measure on PX×Y , i.e., whose
realizations are distributions on X ×Y.

With the above notations, DG is defined as follows. We are given training data sets Si =
((Xi j ,Yi j ))1≤j≤ni such that (Xi j ,Yi j ) ∼ P iXY and P iXY ∼ µ. The test data set is ST = ((XT

j ,Y
T
j ))1≤j≤nT

such that (XT
j ,Y

T
j ) ∼ PT and PT ∼ µ. We assume all (X ,Y ) pairs are drawn iid from their respective

distributions, and that P1, . . . , PN , P
T are iid from µ. The YT

j are not visible to the learner, and the
goal is to accurately predict (YT

j )1≤j≤nT . For any predicted estimate of a label Ŷ , the accuracy is
evaluated using a loss function ` : Y ×Y → R. For greater flexibility in the multiclass case (c > 2),
the label space for prediction is relaxed to Rc and a surrogate loss function ` : Rc × Y → R+ is
employed.

According to the approach in [4], DG is cast as a supervised learning problem where the input to the
classifier is the extended feature space PX × X. A decision function is a function f : PX × X → Rc

that predicts ŶT
j = f (P̂TX ,XT

j ), where P̂X is the associated empirical distribution. The decision
function can be separated into its components f =

[
д1 д2 · · · дc

]
such that дm : PX × X → R,

form = 1, 2, ...c. We define the empirical training error as

ε̂(f ) = 1
N

N∑
i=1

1
ni

ni∑
j=1
`(f (P̂ iX ,Xi j ),Yi j ), (1)

and by denoting X̃ = (PX ,X ), the generalization error of a decision function with respect to loss ` as

ε(f ) = EPTXY ∼µ
E(XT ,YT )∼PTXY

`(f (PTX ,XT ),YT ) = EPTXY ∼µ
E(XT ,YT )∼PTXY

`(f (X̃T ),YT ). (2)

The goal of DG is to learn an f that minimizes this generalization error.

Remarks: (1) Although the generalization error assumes the predictor has access to PX , at training
time as well as at test time PX is only known through the empirical marginal P̂X . (2) Despite the
similarity to standard classification in the infinite sample case, the learning task here is different,
because the realizations (X̃i j ,Yi j ) are neither independent nor identically distributed. (3) Examples
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of loss functions l can be found in Lee et. al [18], Crammer and Singer [9], Weston and Watkins
[33]. For detailed discussion on different multiclass loss functions and their general forms see
[11, 32, 17, 30].

3 Kernel Based Learning Algorithm

The goal of predicting an optimal classifier on the extended feature space can be solved using
kernel based algorithms. For a (symmetric positive definite) kernel k, let Hk denote its associated
reproducing kernel Hilbert space. Let k̄ : (PX × X) × (PX × X) → R be a symmetric and positive
definite kernel on PX × X, whose construction will be described below. Let ` be a loss function.
Further let P̂ iX be the finite sample empirical distribution for sample Si corresponding to Xi j , and let
X̃i j = (P̂ iX ,Xi j ) be the extended data point. We will find a decision function f ∈ H c

k̄
:= Hk̄ × · · ·Hk̄

(c times) and has components дl ∈ Hk̄ , l = 1, 2, ...c, i.e., f =
[
д1 д2 · · · дc

]
. Define

f̂λ = arg min
f ∈H c

k̄

1
N

N∑
i=1

1
ni

ni∑
j=1
`(f (X̃i j ),Yi j ) + λr (f ), (3)

as the empirical estimate of the optimal decision function. Define the regularizer r (f ) as r (f ) :=
‖ f ‖2H c

k̄
:=

∑c
m=1 ‖дm ‖2Hk̄

. The kernel k̄ can be constructed from 3 other kernels kx ,k ′x and κ. Let kx

and k ′x be kernels on X. For example, if X is Rd , kx and k ′x could be Gaussian kernels. The so-called
kernel mean embedding is the mapping Φ : PX → Hk ′x ,

Φ(P) =
∫
X
k ′x (x , ·)dP . (4)

Let κ be a kernel-like function on Φ(PX), such as the Gaussian-like function κ(Φ(P1
X ),Φ(P2

X )) =
exp(−‖Φ(P1

X ) − Φ(P2
X )‖2/2σ 2

κ ). Then κ(Φ(·),Φ(·)) is a kernel on PX [6], and we can now define the
kernel on the extended feature space via as a product kernel

k̄((P1
x ,X1), (P2

x ,X2)) = κ(Φ(P1
X ),Φ(P2

X ))kx (X1,X2). (5)

The empirical estimate of Φ can be computed for {Xi j }1≤j≤n , Xi j ∼ P iX as Φ(P̂ iX ) =
1
n
∑

j k
′
x (Xi j , ·).

The algorithm associated with the minimizer is similar to multiclass extensions of SVMs such as
those presented in [18] applied over the extended feature space. The representer theorem applies in
modified form for the optimization (3).

4 Generalization Error Analysis

We make the following assumptions to analyze the generalization error. For any kernel k, ϕk (x) :=
k(·,x) ∈ Hk denotes the canonical feature map, Bk (R) refers to the closed ball of radius R in Hk and
Bc
k (R) :=

∏c
m=1 Bk (R) refers to the product space of c closed balls.

A I The loss function ` : Rc × Y → R is bounded by B` , and is L`-Lipschitz in the first variable:
For all y, |`(T1,y) − `(T2,y)| ≤ L` ‖T1 −T2‖2 for T1,T2 ∈ Rc .

A II Kernels kx ,k ′x ,κ are bounded by B2
k ,B

2
k ′,B

2
κ respectively.

A III The canonical feature map ϕκ : Hk ′x → Hκ is α-Hölder continuous, i.e., ∀a,b ∈ Bk ′x (Bk ′) :

‖ϕκ (a) − ϕκ (b)‖2 ≤ Lκ ‖a − b‖α2 .

The above assumptions are similar to those presented in [4] translated to multiclass data. Condition
A III holds with α = 1 when κ is the Gaussian-like kernel on Hk ′x . Using the stated assumptions
we shall now develop generalization error bounds for multiclass DG. To generalize the analysis,
an extension of Talagrand’s lemma for bounding the Rademacher complexity is needed. Such an
extension was provided by [20, 22] and [7].
Lemma 1. (Vector Valued Talagrand’s Contraction Lemma) [22] Let F be a class of functions from
X → Rc . Let {µi }Ni=1 and {σi j }N ,c

i=1, j=1 be two sets of independent Rademacher random variables. If
ψ : Rc → R is L-Lipschitz under ‖·‖p where p ≥ 2, then

3



Eµ
[

sup
f ∈F

N∑
i=1

µiψ (f (xi ))
]
≤
√

2LEσ
[

sup
f ∈F

N∑
i=1

c∑
j=1

σi jдj (xi )
]
.

For simplicity’s sake, we assume that ni = n to state the generalization error bound.

Theorem 1. (Estimation error control) Assuming that conditions A I - A III hold then for any R > 0,
with probability at least 1 − δ :

sup
f ∈Bc

k̄
(R)
|ε̂(f ) − ε(f )| ≤L`LκRBkc(Bk ′)α

(√2 log(2Nδ−1)
n

+

√
1
n
+

4 log(2Nδ−1)
3n

)α
+

8
√

2RL`BkBκc√
N

+ B`

√
log(8δ−1)

2N

Proof Sketch Let E(f ) = |ε̂(f ) − ε(f )|.

sup
f ∈Bc

k̄
(R)
E(f ) ≤ sup

f ∈Bc
k̄
(R)

���̂ε(f ) − 1
Nn

N∑
i=1

n∑
j=1
`(f (X̃i j ),Yi j )

��� + sup
f ∈Bc

k̄
(R)

��� 1
Nn

N∑
i=1

n∑
j=1
`(f (X̃i j ),Yi j ) − ε(f )

���
= (I ) + (I I )

Term (I ) is bounded by application of Lipschitz continuity of `, union bounds for tasks and classes
over f and through Hölder continuity in assumption A III. Bounding the term (I I ) is similar to
bounding term (I I ) in Theorem 5 in [4] with modifications for multi-class loss. In addition, the
modified Talagrand’s lemma 1 is applied to bound the Rademacher complexity [22].

5 Results

We test the proposed algorithm on 4 multiclass datasets and compare it with pooling, where data
from all the tasks are pooled together to learn one single classifier. Datasets description are given
below and a summary is in Table 1.

Dataset Training Tasks Test Tasks Examples Per Task Classes
Synthetic 80 20 100 10
Satellite 400 100 77-165 3

HAR 20 10 300 6
MNIST-MOD 80 20 100 10

Table 1: Summary of Datasets

Synthetic Dataset: Features for synthetic data are drawn from the unit square. Based on one of the
dimensions, the data are labeled from 0 to 10, e.g., if the feature value is between 0 and 0.1, then it’s
labeled as 1, if it’s in between 0.1 and 0.2, then it’s labeled as 2, and so on. After that, the feature
vectors are rotated clockwise by an angle randomly drawn from 0 to 180 degrees to get data for one
task. The process is repeated 100 times to get data for 100 tasks out of which 80 are train tasks and
20 are test tasks. Fig. 1 shows 3 such tasks for θ = 0, 90 and 180 where the supports don’t overlap at
all, and Fig. 2 shows 13 tasks where the supports overlap.
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Figure 1: Synthetic Dataset: Three tasks θ =
{0, 90, 180}
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Figure 2: Synthetic Dataset: Thirteen tasks
θ = {0, 15, 30, ..., 180}

Satellite Dataset: The problem is described in the introduction, and we used the dataset presented
by [31] modified for c = 3 spacecraft.

HAR Dataset: This is a human activity recognition using smart-phone dataset from UCI repository
[1]. Each of 30 volunteers performed six activities (walking, walking upstairs, walking downstairs,
sitting, standing, laying) wearing the smart-phone.

MNIST-MOD Dataset: We randomly draw 1000 images from MNIST’s train dataset. Then we
rotate each of this image by randomly drawn angle from 0 to 180 degrees and repeat this 100 times to
get data for 100 tasks. Example for rotated MNIST dataset is shown in Fig. 3.

Figure 3: MNIST Data with no rotation (first row) and 90 degree rotation (second row)

We use all Gaussian kernels and a novel random Fourier Feature (RFF) approximation, which extends
the usual RFF approximation on Euclidean space X [29] to the extended feature space PX × X, to
speed up the algorithm. We used Liblinear package for the implementation [12]. All hyperparameters
were selected using five fold cross-validation and experiments were repeated 10 times. We show
results in Table 2. The proposed method performs the best in three datasets and equally well in the
one remaining dataset. The more our method outperforms pooling, the more knowledge can be shared
between tasks.

Dataset Pooling Proposed Method
Synthetic 70.73 ( ±2.30) 25.40 ( ±1.72)
Satellite 11.95 ( ±0.46) 8.28 ( ±0.79)

HAR 1.69 ( ±0.56) 1.68 ( ±0.58)
MNIST-MOD 22.79 ( ±1.38) 21.39 ( ±1.24)

Table 2: Percentage Error

6 Conclusion and Future Work

In this work, we extended the kernel-based algorithm for domain generalization of [4] to the multiclass
setting, along with its generalization error bound. We implemented the approach, demonstrating
its improved performance with respect to a pooling strategy on four data sets. Future work will
focus on improved generalization bounds and extensions to zero shot learning. Our bound depends
polynomially on c and for large number of classes, this may not be desirable. We intend to investigate
assumptions under which there is a chance to improve this dependency. In extensions, we are
interested in zero shot learning where training tasks have c classes and test tasks have c + 1 classes.
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