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Q: Why are we so good at Speech, MT (but bad at NLU)?

People naturally translate and transcribe.
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Noisy Channel Model
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[Ritter, Cherry, Dolan EMNLP 2011]

Who wants to come over for dinner tomorrow?
Input:

Output:

{
want toYum ! I

{
be there

{
tomorrow !
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Bad Action

Outcome



how old are you

Encoding

State

Deep Reinforcement Learning
[Li, Monroe, Ritter, Galley, Gao, Jurafsky EMNLP 2016]
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Encoding

Deep Reinforcement Learning

Action

[Li, Monroe, Ritter, Galley, Gao, Jurafsky EMNLP 2016]

How old are you?

i 'm 16 .



I’m 16 . EOS

Decoding

EOS I’m 16 .how old are you

Encoding

REINFORCE Algorithm (Williams,1992) 

What we want to learn 

Learning: Policy Gradient

ActionHow old are you?

i 'm 16 .
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A: Turing Test

Adversarial Learning 
(Goodfellow et al., 2014) 
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Adversarial Learning Improves 
Response Generation

Human Evaluator: 

Machine Evaluator:

Adversarial Success
 (How often can you fool a machine)

Adversarial Learning 8.0%
Standard Seq2Seq model 4.9%

Adversarial 
Win

Adversarial 
Lose

Tie

62% 18% 20%

vs vanilla generation model

Slide Credit: Jiwei Li

[Bowman et. al. 2016]
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Learning from Distant 
Supervision

3) Time Normalization

4) Event Extraction

Challenge: diversity in noisy text

Challenge: lack of negative examples

[Tabassum, Ritter, Xu, EMNLP 2016]

[Ritter, et. al. WWW 2015]

O(✓) =

NX

i

log p✓(yi|xi)

| {z }
Log Likelihood

��UD(p̃||p̂unlabeled✓ )| {z }
Label regularization

� �L2 X

j

w2

j

| {z }
L2

regularization

1) Named Entity Recognition
Challenge: highly ambiguous labels
[Ritter, et. al. EMNLP 2011]

2) Relation Extraction
Challenge: missing data
[Ritter, et. al. TACL 2013]

[Konovalov, et. al. WWW 2017]

[Mintz et. al. 2009]
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Time Normalization
[Tabassum, Ritter, Xu EMNLP 2016]
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Time Normalization
Distant Supervision  

(no human labels or rules!)

[Tabassum, Ritter, Xu EMNLP 2016]

1 Jan 2016  

State-of-
the-art time 
resolvers

TempEX
HeidelTime
SUTime
UWTime

{ }
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Deterministic OR

…w1 w2 w3 wn

[ Mercury,  5/9/2016 ]

Maximize Conditional
Likelihood:X

z

P (z, t|w, ✓)
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Multiple Instance Learning Tagger 



 Sentence Level Tags:   
TL = Future  
MOY= May  
DOM=9 
DOW= Mon

Missing Data Problem



Aggregated
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[Ritter, et. al. TACL 2013]
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Mentioned in Text

Encourage Agreement

Implied by Event Date
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Missing Data Problem 
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Missing Data Extension



Example Tags
Word Im Hella excited for tomorrow
Tag NA NA Future NA Future

Word Thnks for a Christmas party on fri
Tag NA NA NA December NA NA Friday



Evaluation



Evaluation
17% increase in     

F- score over SUTime
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Design Models for the Data
(rather than the other way around)

Thank You!


