What's so Hard about Natural Language Understanding?

Alan Ritter

Computer Science and Engineering The Ohio State University

Collaborators: Jiwei Li, Dan Jurafsky (Stanford) Bill Dolan, Michel Galley, Jianfeng Gao (MSR), Colin Cherry (Google) Jeniya Tabassum (Ohio State), Alexander Konovalov (Ohio State), Wei Xu (Ohio State) Brendan O'Connor (Umass)

THE OHIO STATE UNIVERSITY

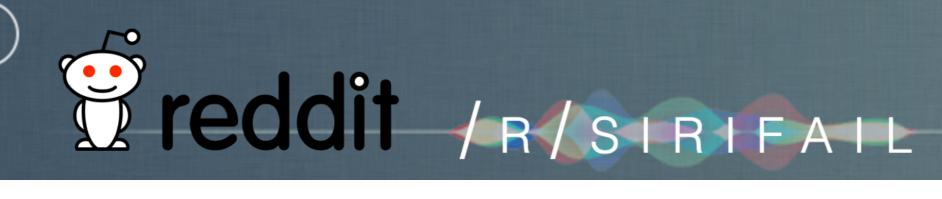
What's so Hard about Natural Language Understanding?

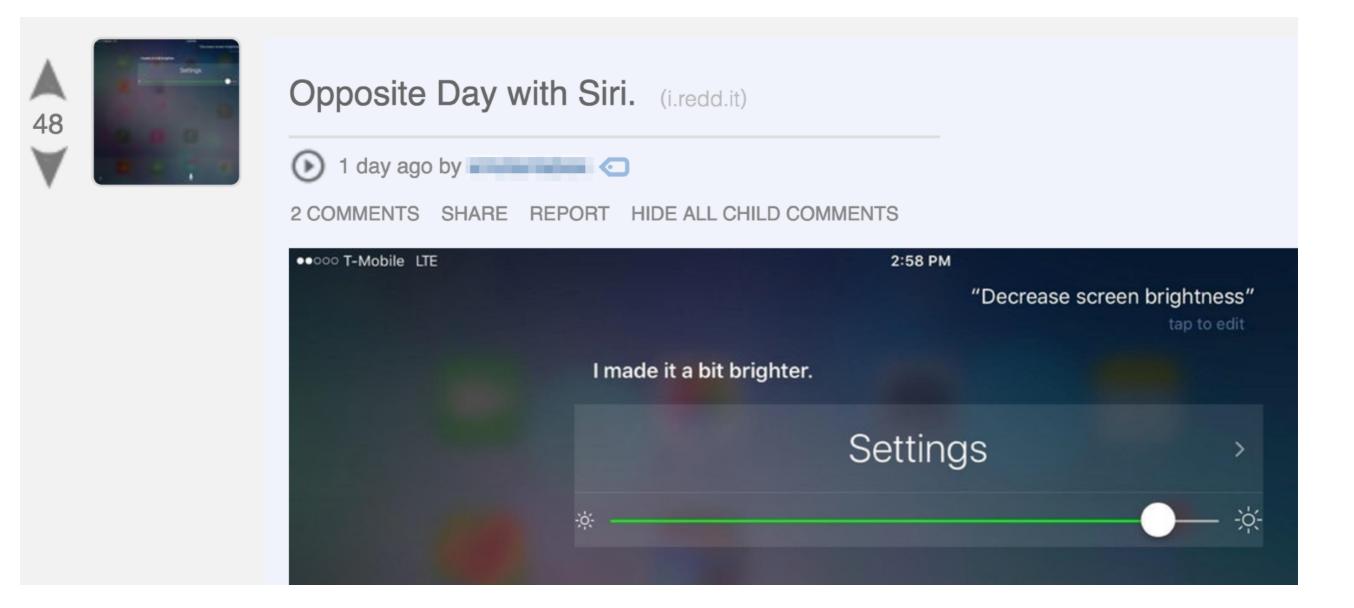
Alan Ritter

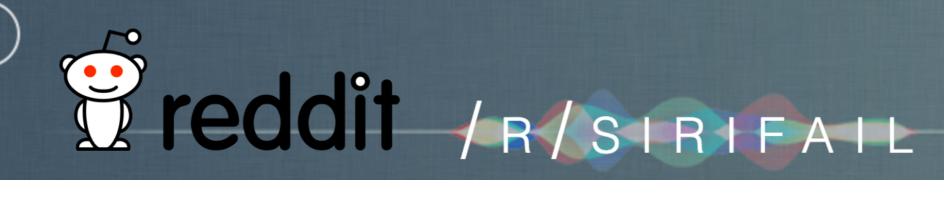
Computer Science and Engineering The Ohio State University

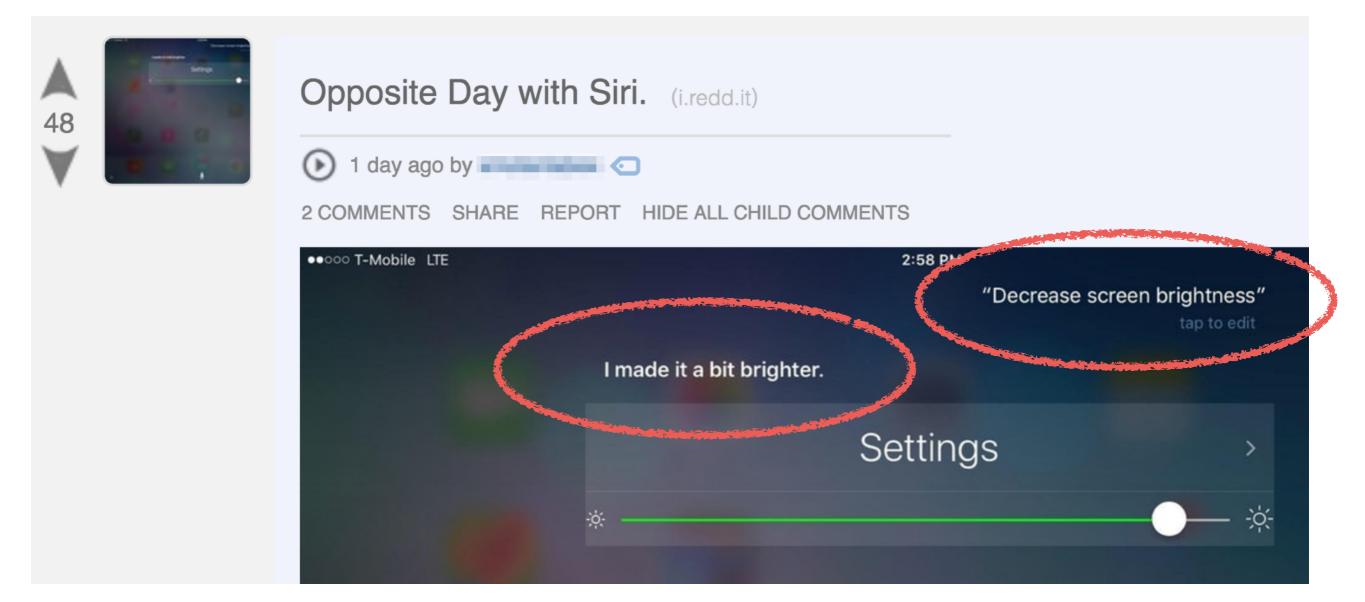
Collaborators: Jiwei Li, Dan Jurafsky (Stanford) Bill Dolan, Michel Galley, Jianfeng Gao (MSR), Colin Cherry (Google) Jeniya Tabassum (Ohio State), Alexander Konovalov (Ohio State), Wei Xu (Ohio State) Brendan O'Connor (Umass)

THE OHIO STATE UNIVERSITY









People *naturally* translate and transcribe.

People *naturally* translate and transcribe.

Q: Large, End-to-End Datasets for NLU?

- Web-scale Conversations?
- Web-scale Structured Data?

People *naturally* translate and transcribe.

Q: Large, End-to-End Datasets for NLU?

- Web-scale Conversations?
- Web-scale Structured Data?

Data-Driven Conversation

- Twitter: ~ 500 Million
 Public SMS-Style
 Conversations per
 Month
- Goal: Learn conversational agents directly from massive volumes of data.

●●●○○ AT&T 3G 중	2:54 PM	85% 🔳
Messages	Bob	Contact
	On my way	to the airport
Have a safe flight!		
		Thanks!

Data-Driven Conversation

- Twitter: ~ 500 Million
 Public SMS-Style
 Conversations per
 Month
- Goal: Learn conversational agents directly from massive volumes of data.



Noisy Channel Model

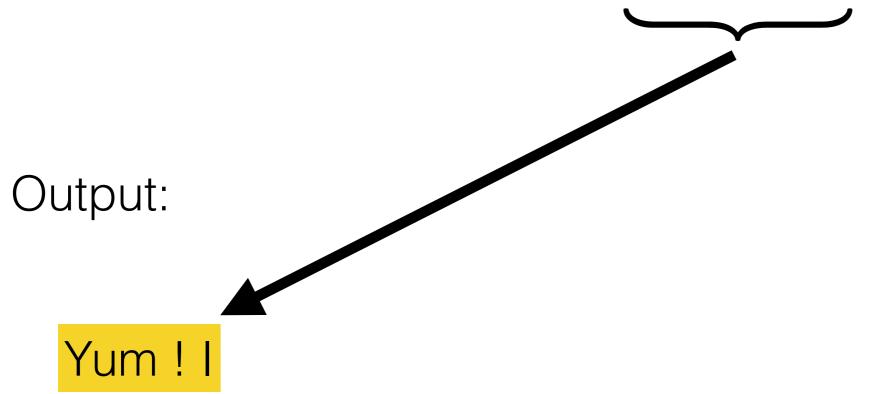
Input:

Who wants to come over for dinner tomorrow?

Noisy Channel Model

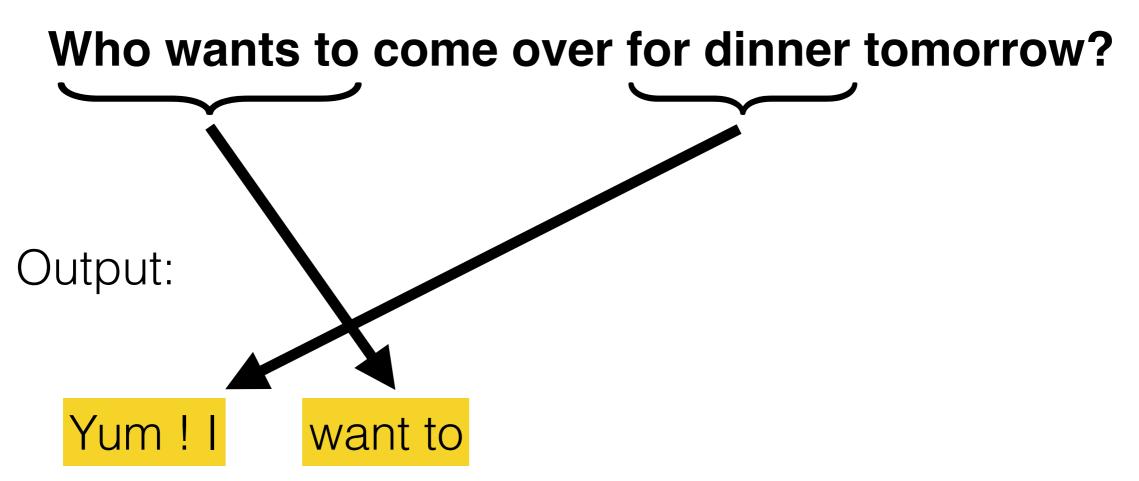
Input:

Who wants to come over for dinner tomorrow?



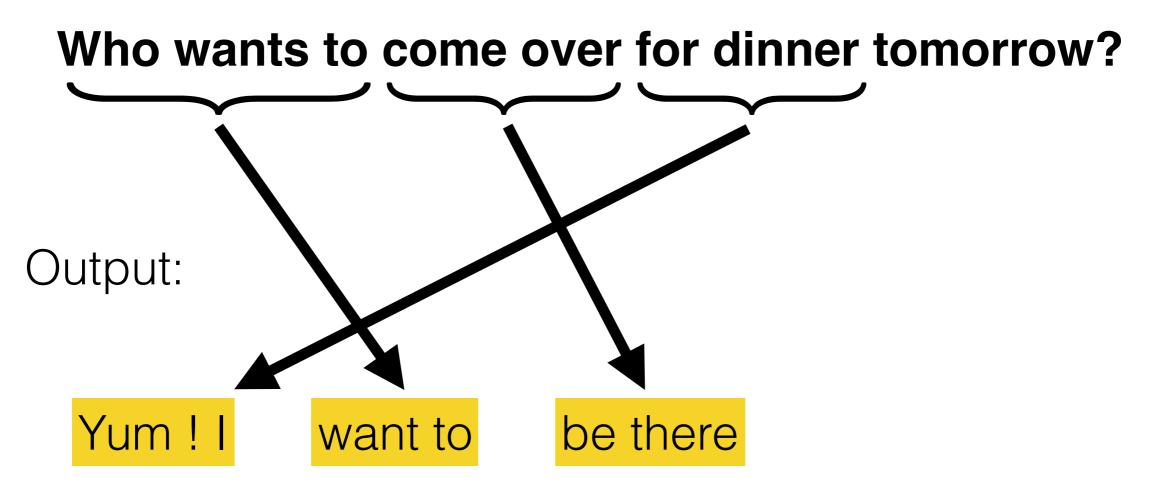
Noisy Channel Model

Input:



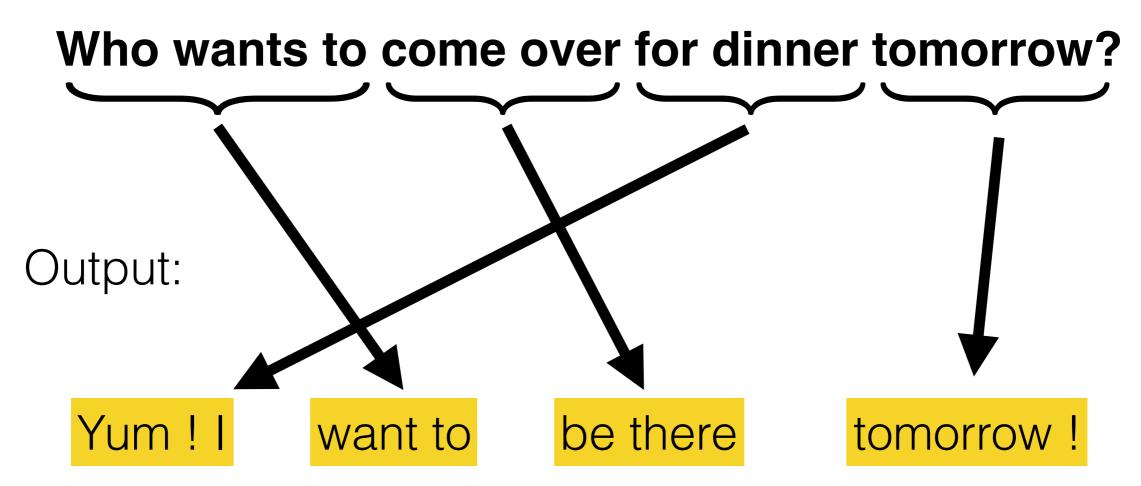
Noisy Channel Model

Input:



Noisy Channel Model

Input:



Neural Conversation

[Sordoni et. al. 2015] [Xu et. al. 2016] [Wen et. al. 2016] [Li et. al. 2016] [Kannan et. al. 2016] [Serban et. al. 2016]

Computer, respond to this email.

Tuesday, November 03, 2015

Posted by Greg Corrado*, Senior Research Scientist

		± 0	to 🌃 🛢	5:24
×	Ŧ	J	\checkmark	:
Server issues				
Dan Mané to me			5:22 PM	:
Hi team,				
The server appears requests (see atta a new release sinc going on. Is anyor	ched dashboards e last night, so l'n). There n not su	hasn't be	
I'll check on it.	I'll see if I can fin out.	d	I'm on it.	
\bigtriangledown	0			

Another bizarre feature of our early prototype was its propensity to respond with "I love you" to seemingly anything. As adorable as this sounds, it wasn't really what we were hoping for. Some analysis revealed that the system was doing exactly what we'd trained it to do, generate likely responses -- and it turns out that responses like "Thanks", "Sounds good", and "I love you" are super common -- so the system would lean on them as a safe bet if it was unsure. Normalizing the

Neural Conversation

[Sordoni et. al. 2015] [Xu et. al. 2016] [Wen et. al. 2016] [Li et. al. 2016] [Kannan et. al. 2016] [Serban et. al. 2016]

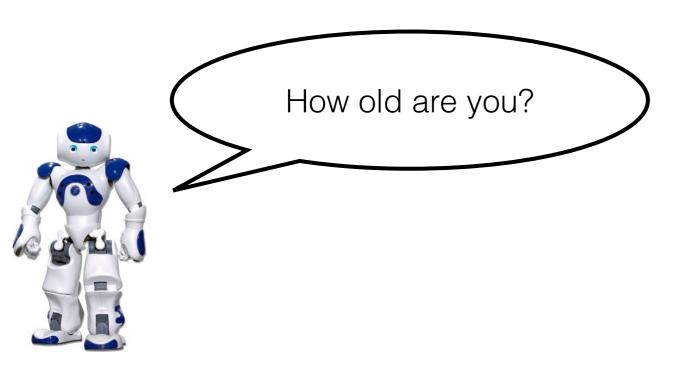
Computer, respond to this email.

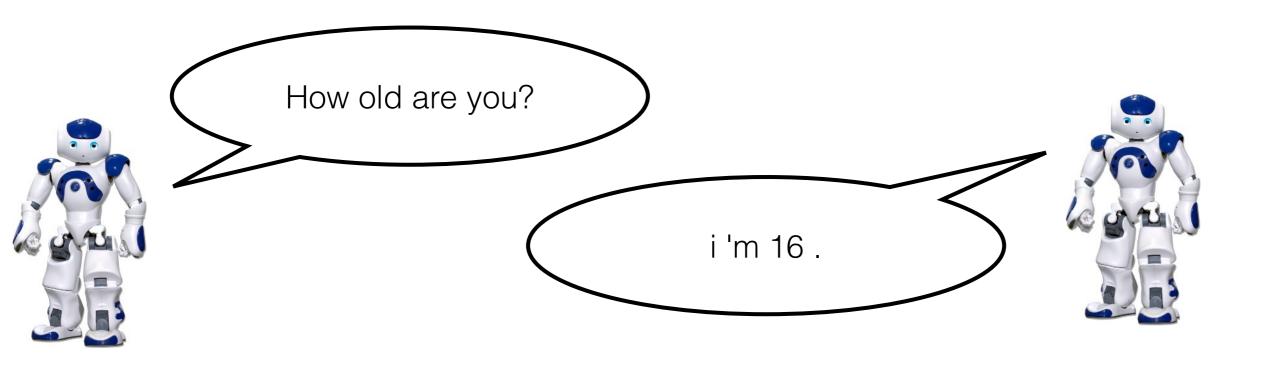
Tuesday, November 03, 2015

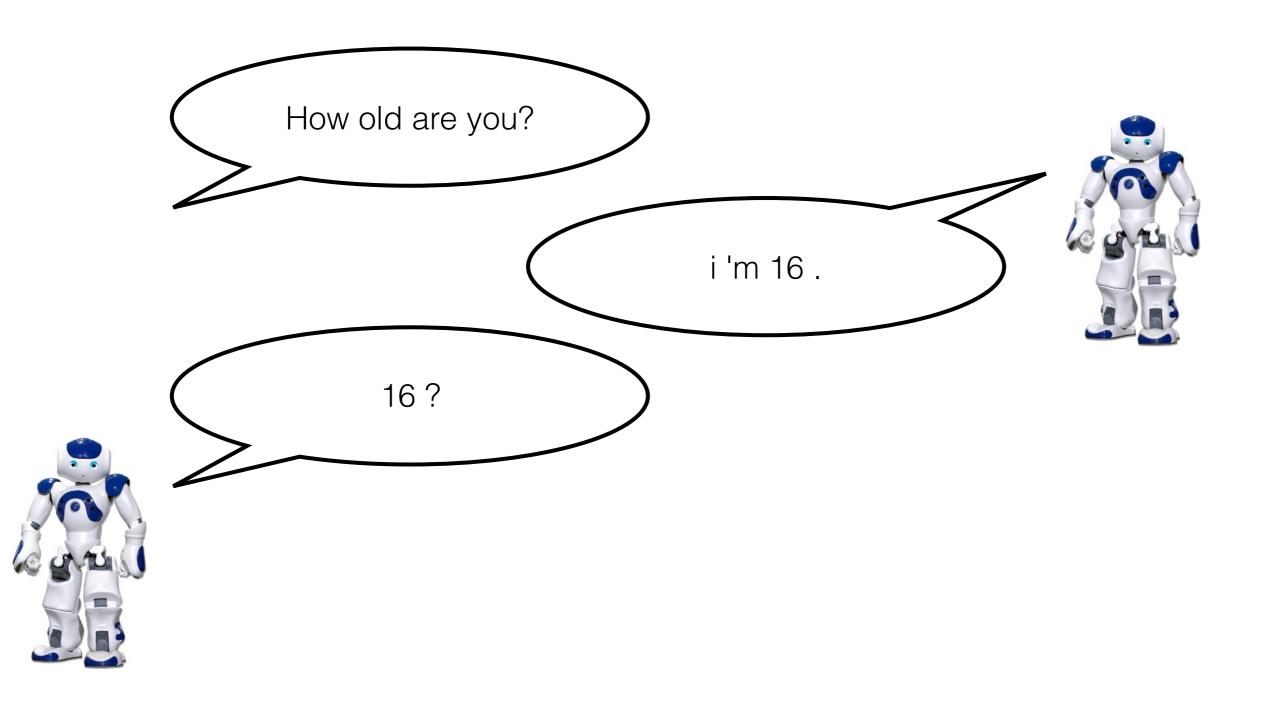
Posted by Greg Corrado*, Senior Research Scientist

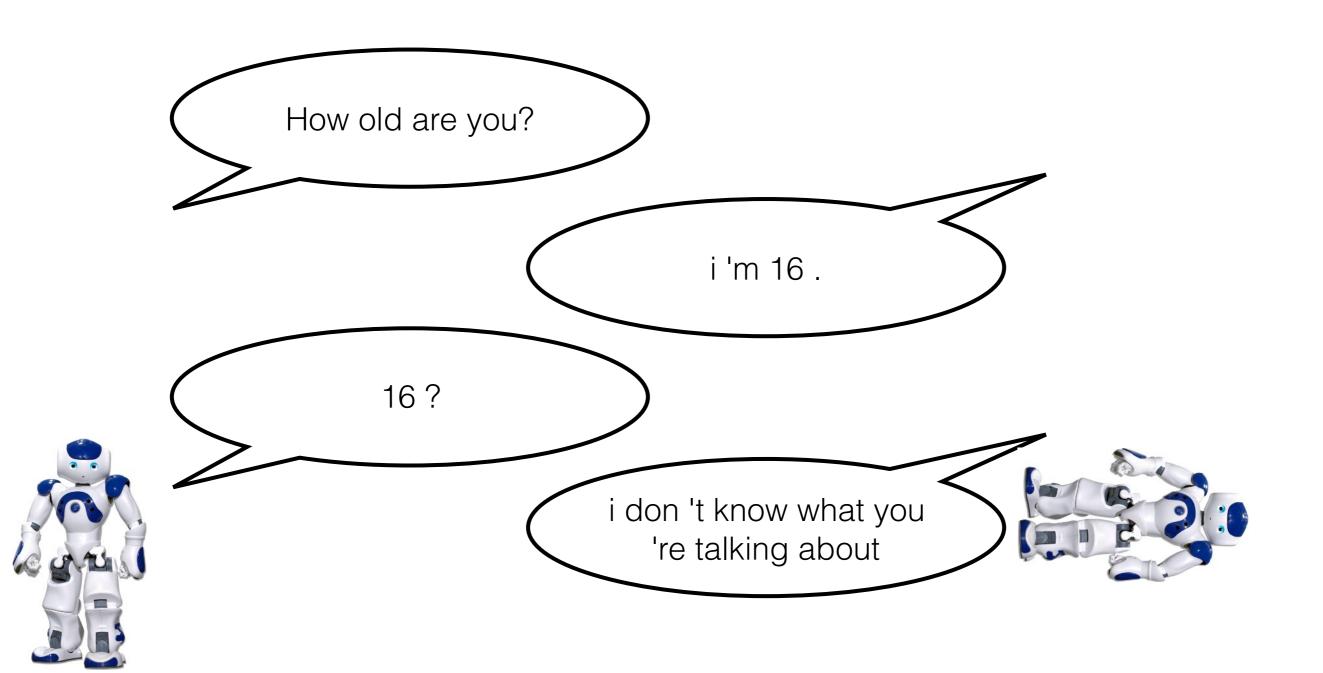
		± 0	to 🛯 🕯	5:24
×	Ŧ	0	\checkmark	:
Server issues				
Dan Mané to me			5:22 PM	:
Hi team,				
The server appear requests (see atta a new release sind going on. Is anyou	ched dashboards ce last night, so I'n). There n not sur	hasn't b	
I'll check on it.	I'll see if I can find out.	1	I'm on it.	
\bigtriangledown	0			

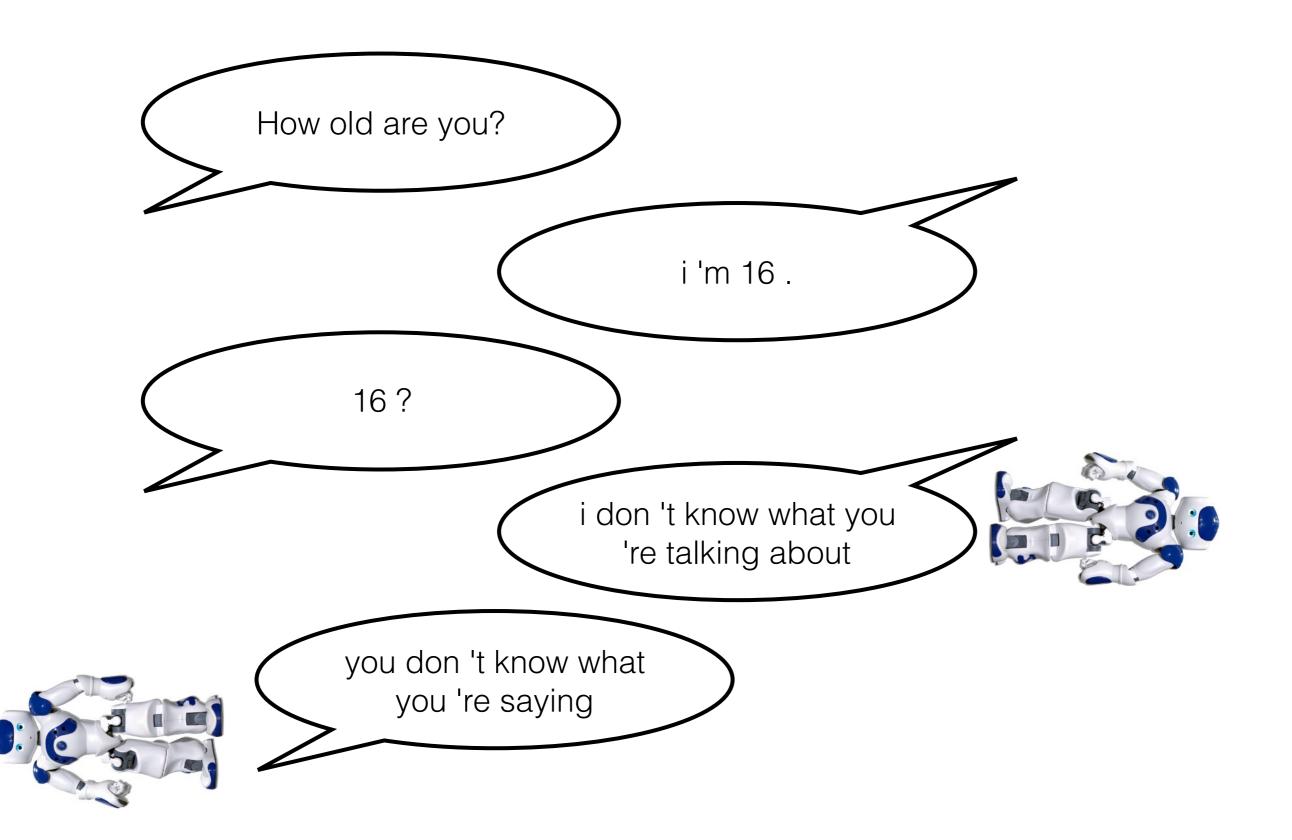
Another bizarre feature of our early prototype was its propensity to respond with "I love you" to seemingly anything. As adorable as this sounds, it wasn't really what we were hoping for. Some analysis revealed that the system was doing exactly what we'd trained it to do, generate likely responses -- and it turns out that responses like "Thanks", "Sounds good", and "I love you" are super common -- so the system would lean on them as a safe bet if it was unsure. Normalizing the

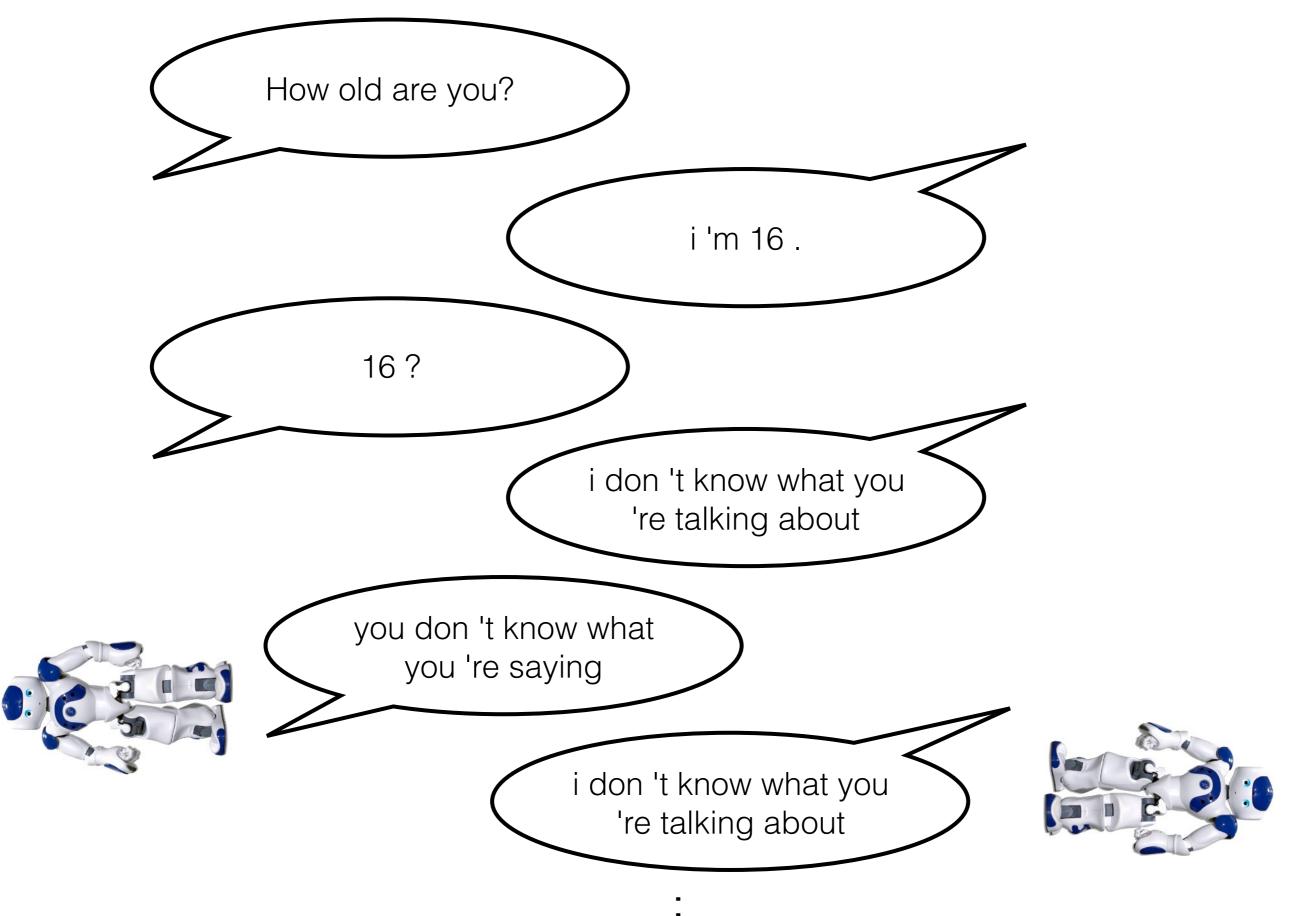


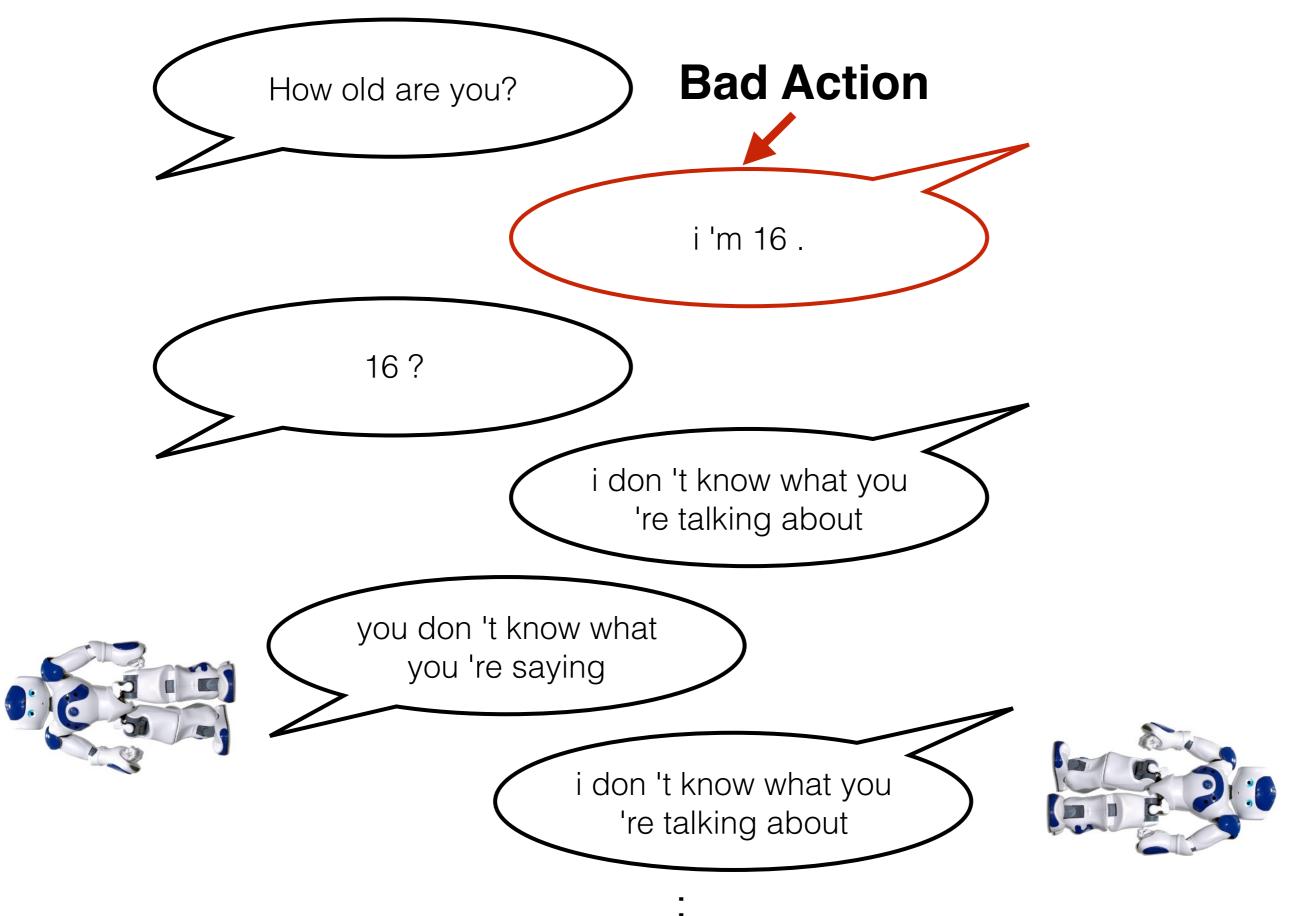


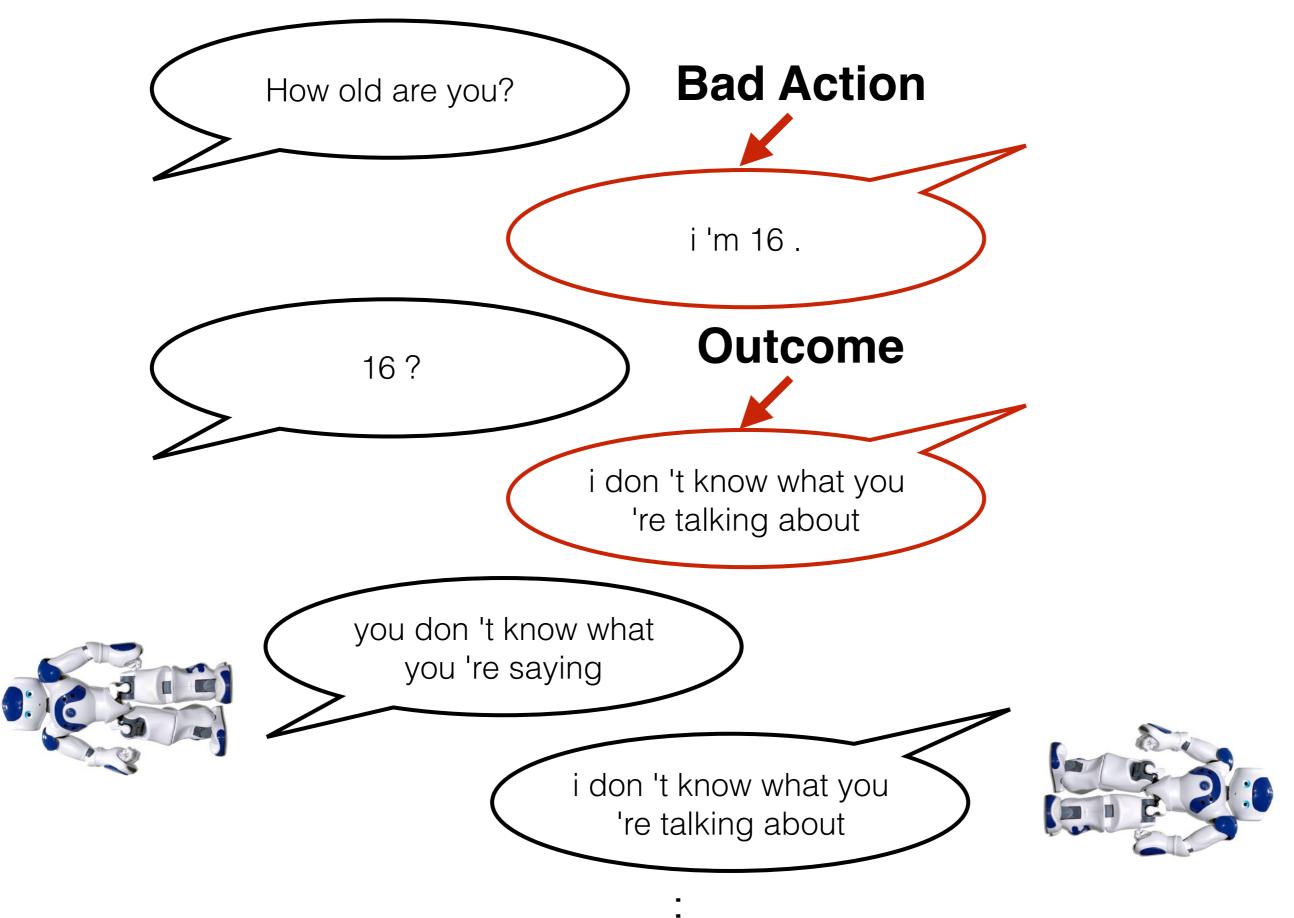






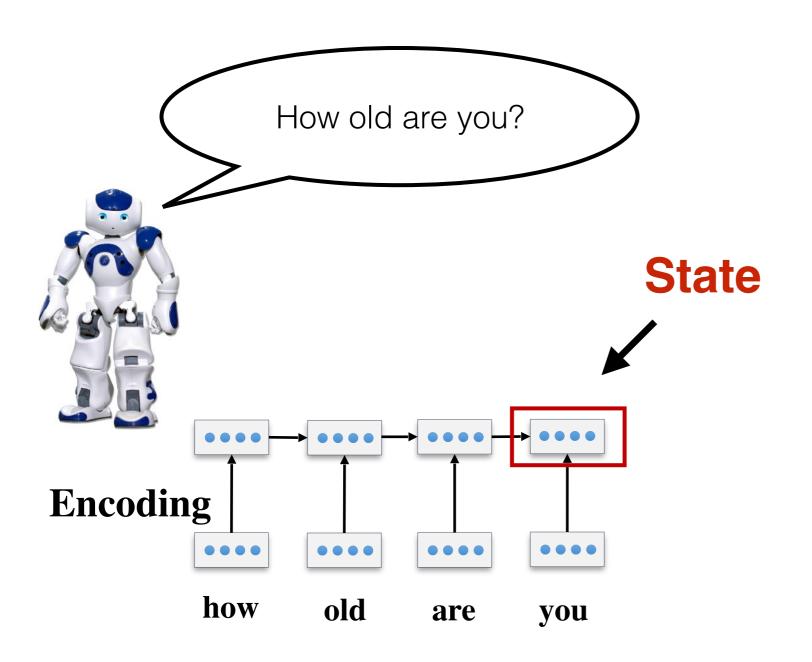






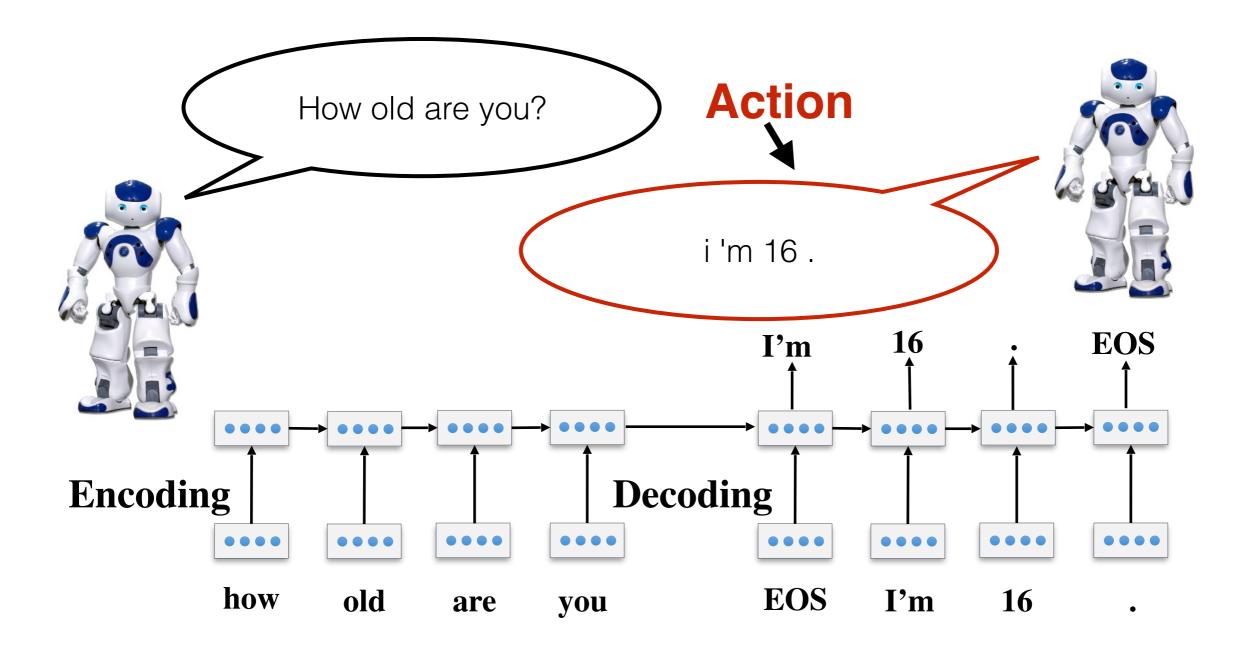
Deep Reinforcement Learning

[Li, Monroe, Ritter, Galley, Gao, Jurafsky EMNLP 2016]

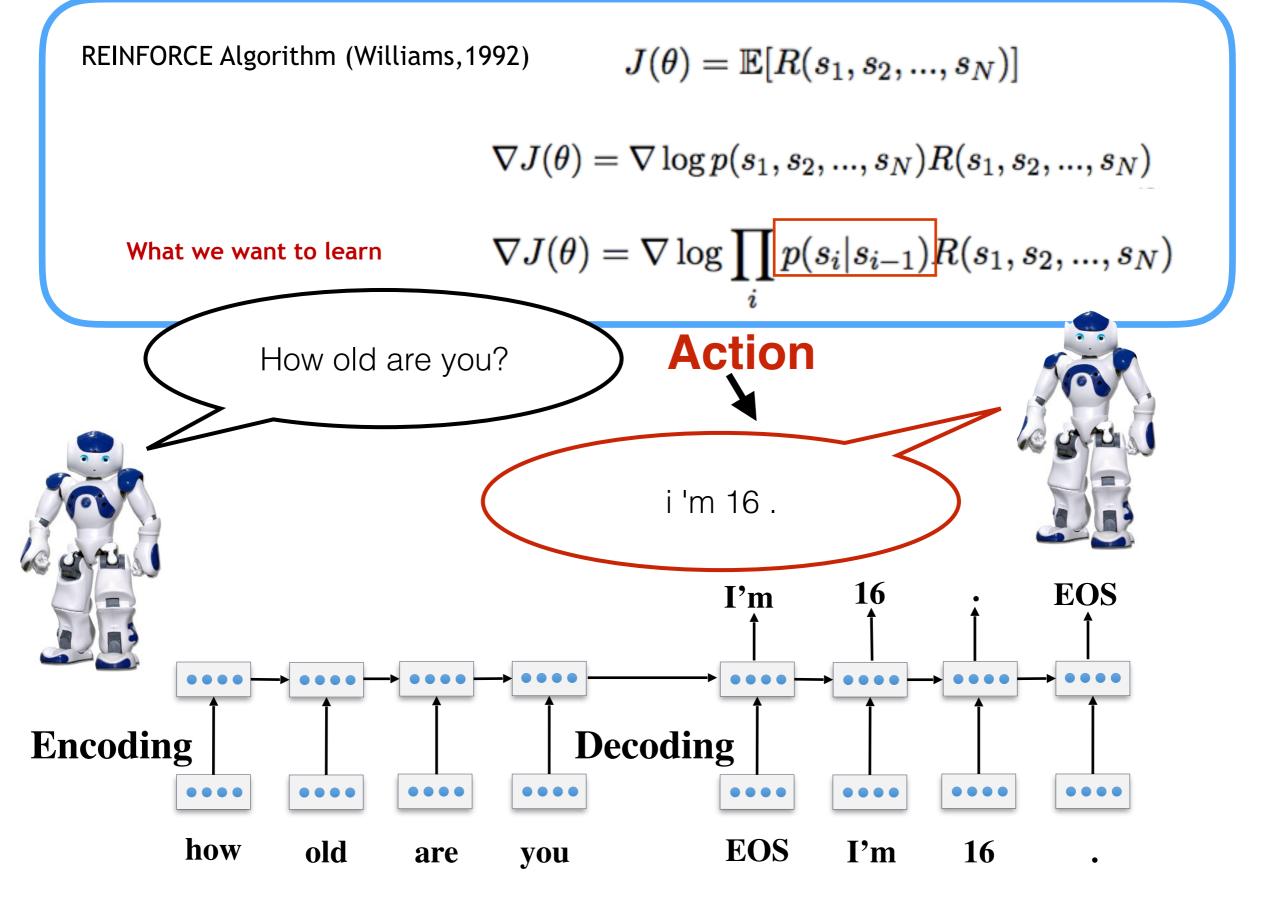


Deep Reinforcement Learning

[Li, Monroe, Ritter, Galley, Gao, Jurafsky EMNLP 2016]



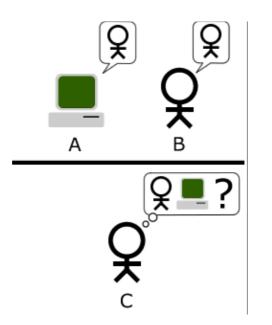
Learning: Policy Gradient



Q: Rewards?

Q: Rewards?

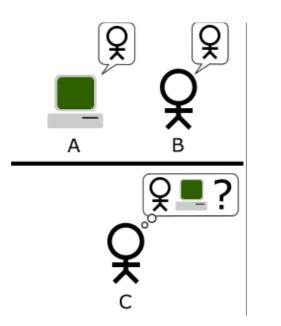
A: Turing Test





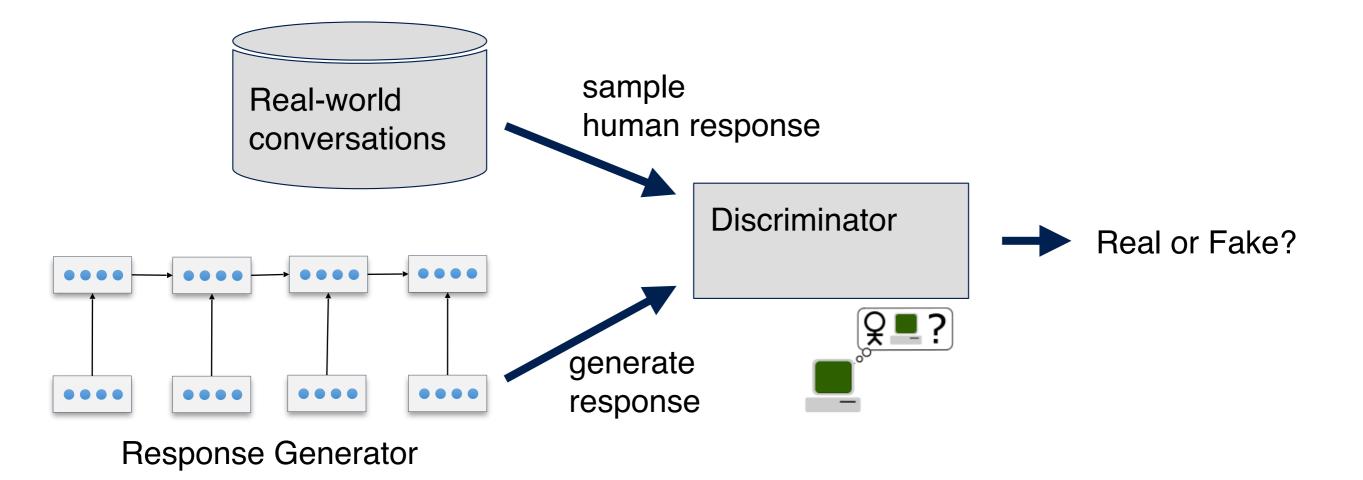
Q: Rewards?

A: Turing Test



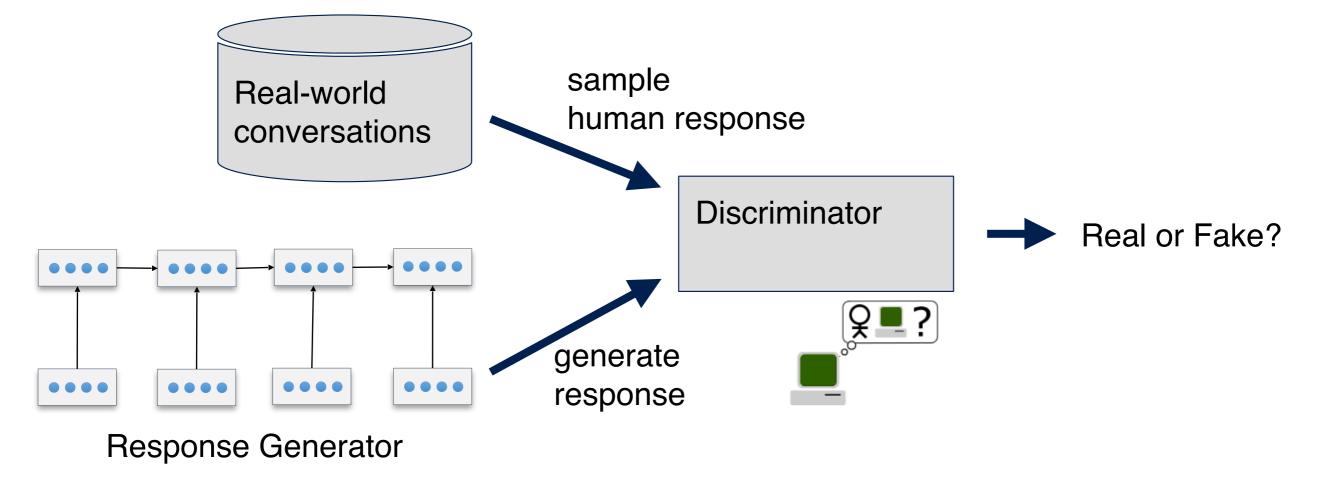
Adversarial Learning (Goodfellow et al., 2014)

Adversarial Learning for Neural Dialogue [Li, Monroe, Shi, Jean, Ritter, Jurafsky EMNLP 2016]



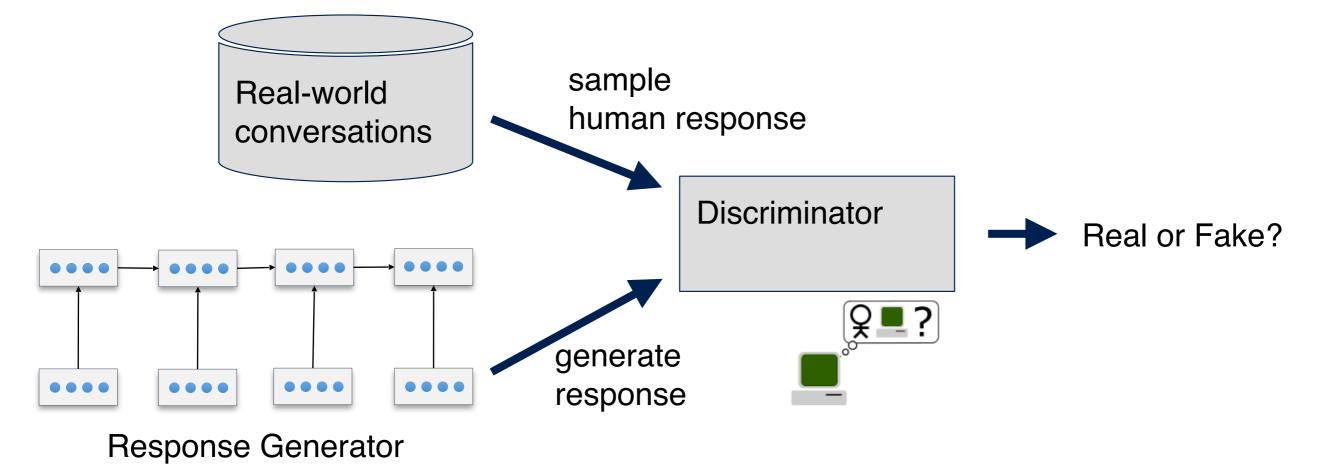
Adversarial Learning for Neural Dialogue [Li, Monroe, Shi, Jean, Ritter, Jurafsky EMNLP 2016]

(Alternate Between Training Generator and Discriminator)



Adversarial Learning for Neural Dialogue [Li, Monroe, Shi, Jean, Ritter, Jurafsky EMNLP 2016]

(Alternate Between Training Generator and Discriminator)



REINFORCE Algorithm (Williams, 1992)

Adversarial Learning Improves Response Generation

Human Evaluator:

vs vanilla generation model

Adversarial Win	Adversarial Lose	Tie
62%	18%	20%

Adversarial Success (How often can you fool a machine)

Machine Evaluator: [Bowman et. al. 2016]

Adversarial Learning	8.0%
Standard Seq2Seq model	4.9%

People *naturally* translate and transcribe.

Q: Large, End-to-End Datasets for NLU?

- Web-scale Conversations?
- Web-scale Structured Data?

People *naturally* translate and transcribe.

Q: Large, End-to-End Datasets for NLU?

- Web-scale Conversations?
- Web-scale Structured Data?

Generates fluent open domain replies

Q: Why are we so good at Speech, MT (but bad at NLU)?

People *naturally* translate and transcribe.

Q: Large, End-to-End Datasets for NLU?

- Web-scale Conversations?
- Web-scale Structured Data?

Generates fluent open domain replies

Really Natural Language Understanding? Q: Why are we so good at Speech, MT (but bad at NLU)?

People *naturally* translate and transcribe.

Q: Large, End-to-End Datasets for NLU?

- Web-scale Conversations?
- Web-scale Structured Data?

Generates fluent open domain replies

Really Natural Language Understanding?

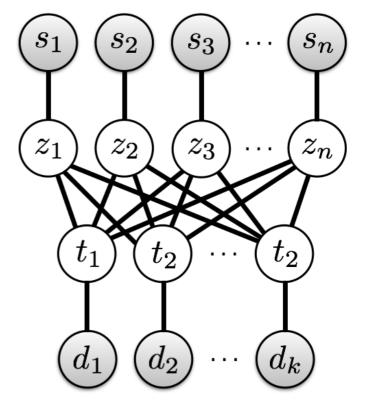
Learning from Distant Supervision [Mintz et. al. 2009]

- Named Entity Recognition
 Challenge: highly ambiguous labels
 [Ritter, et. al. EMNLP 2011]
 2) Relation Extraction
 Challenge: missing data
 [Ritter, et. al. TACL 2013]
- 3) Time Normalization

Challenge: diversity in noisy text [Tabassum, Ritter, Xu, EMNLP 2016]

4) Event Extraction ^C Challenge: lack of negative examples [Ritter, et. al. WWW 2015] [Konovalov, et. al. WWW 2017]

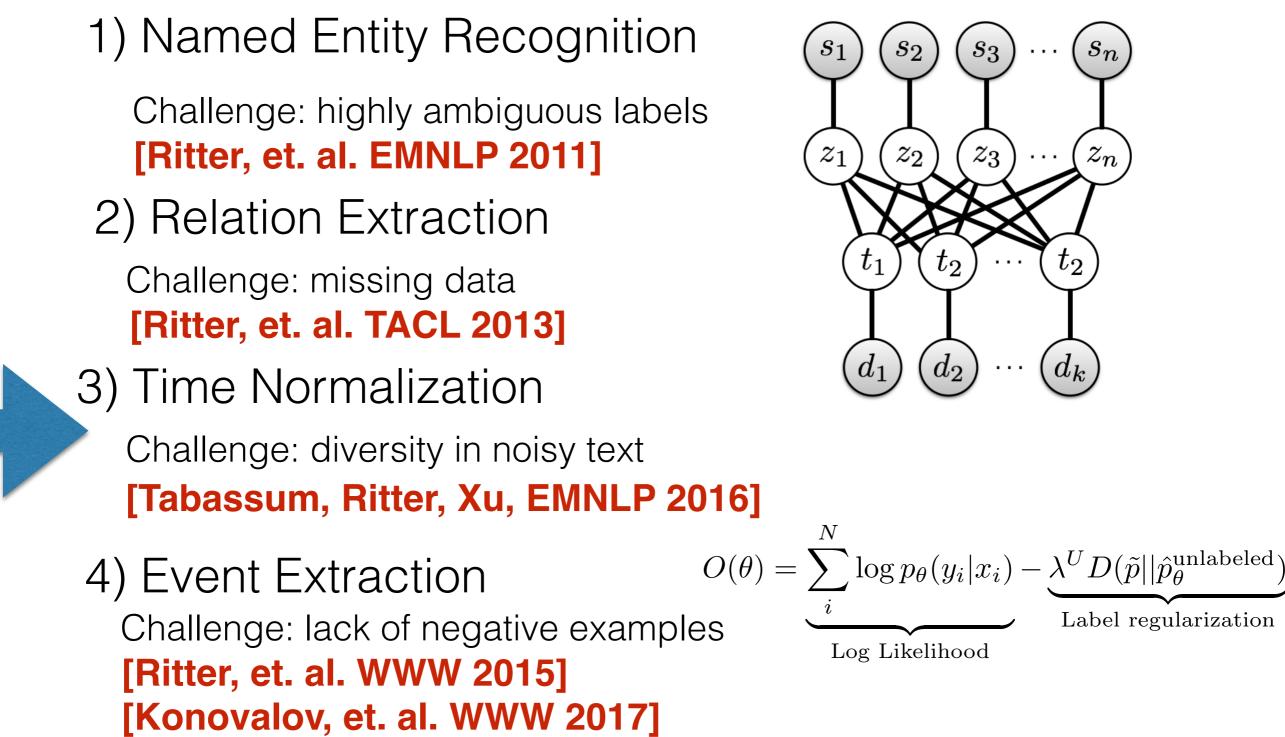
$$D(\theta) = \sum_{i}^{N} \log p_{\theta}(y_i | x_i) - \underbrace{\lambda^U D(\tilde{p} | | \hat{p}_{\theta}^{\text{unlabeled}})}_{\text{Log Likelihood}} \underbrace{\lambda^U D(\tilde{p} | | \hat{p}_{\theta}^{\text{unlabeled}})}_{\text{Label regularization}}$$



Learning from **Distant** Supervision [Mintz et. al. 2009]

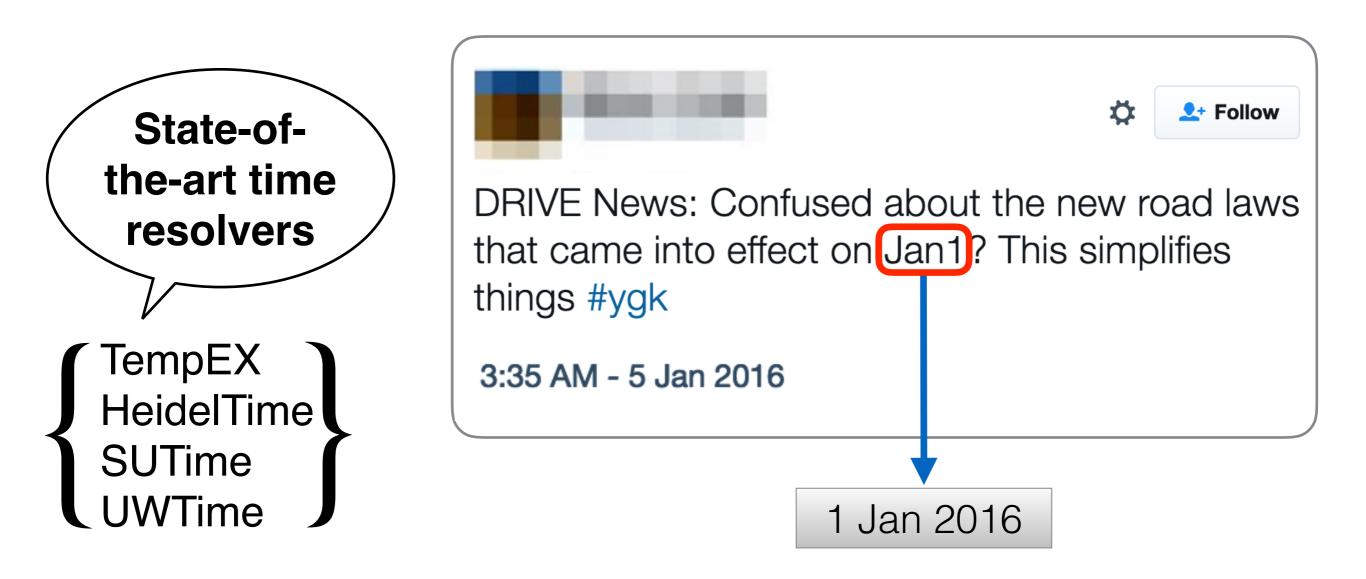
 s_n

 z_n



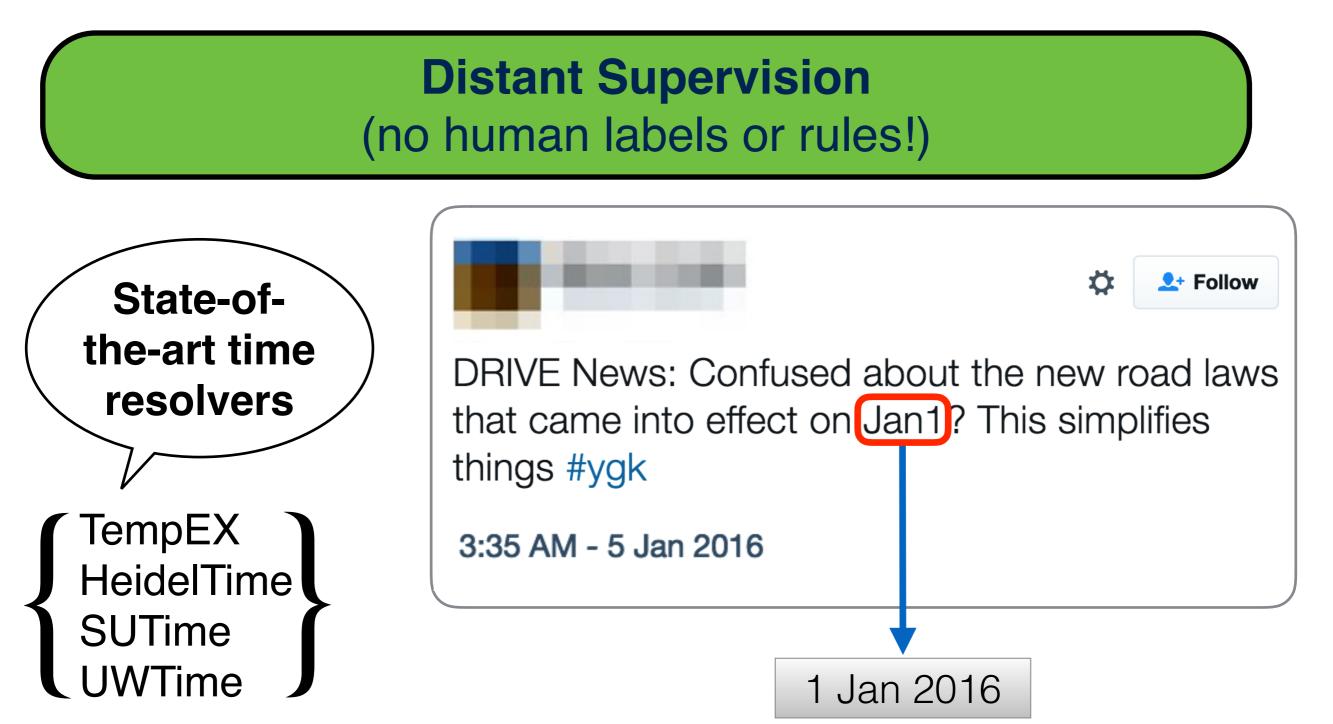
Time Normalization

[Tabassum, Ritter, Xu EMNLP 2016]



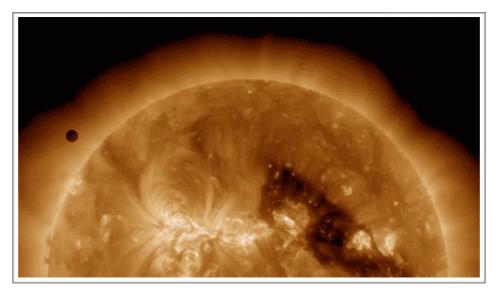
Time Normalization

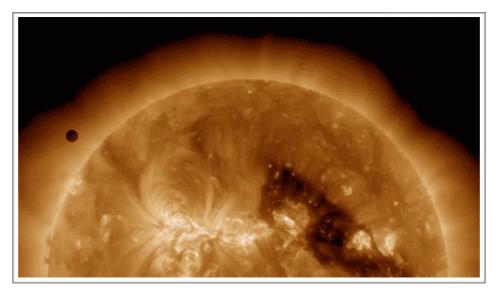
[Tabassum, Ritter, Xu EMNLP 2016]

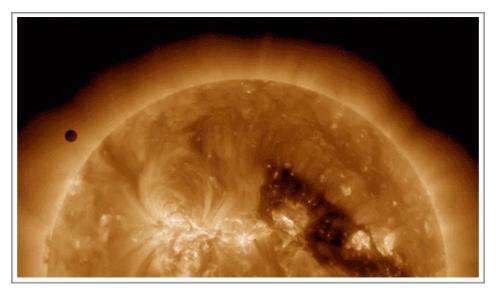


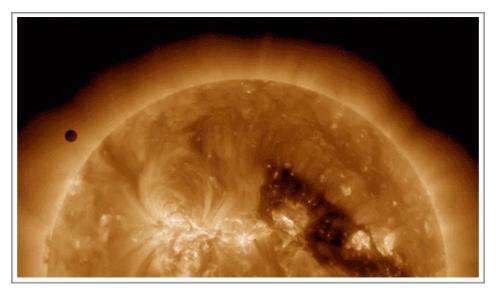


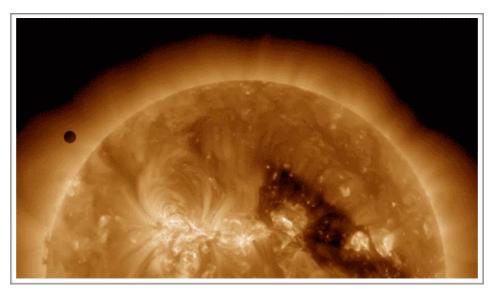


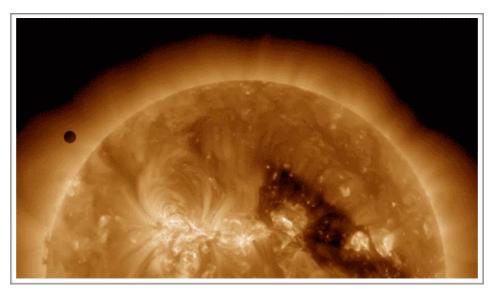


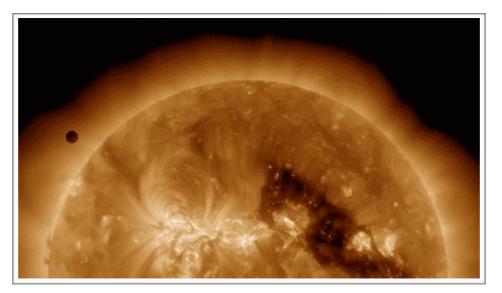


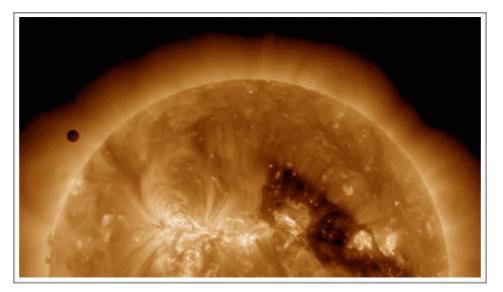




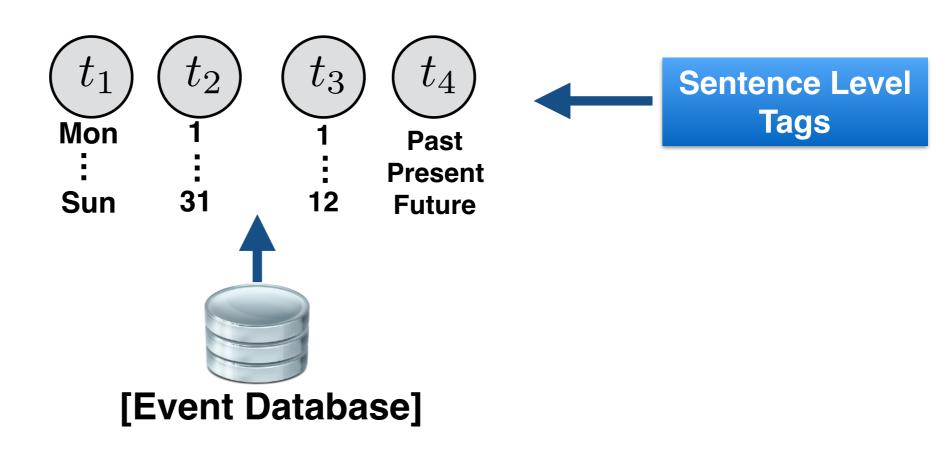


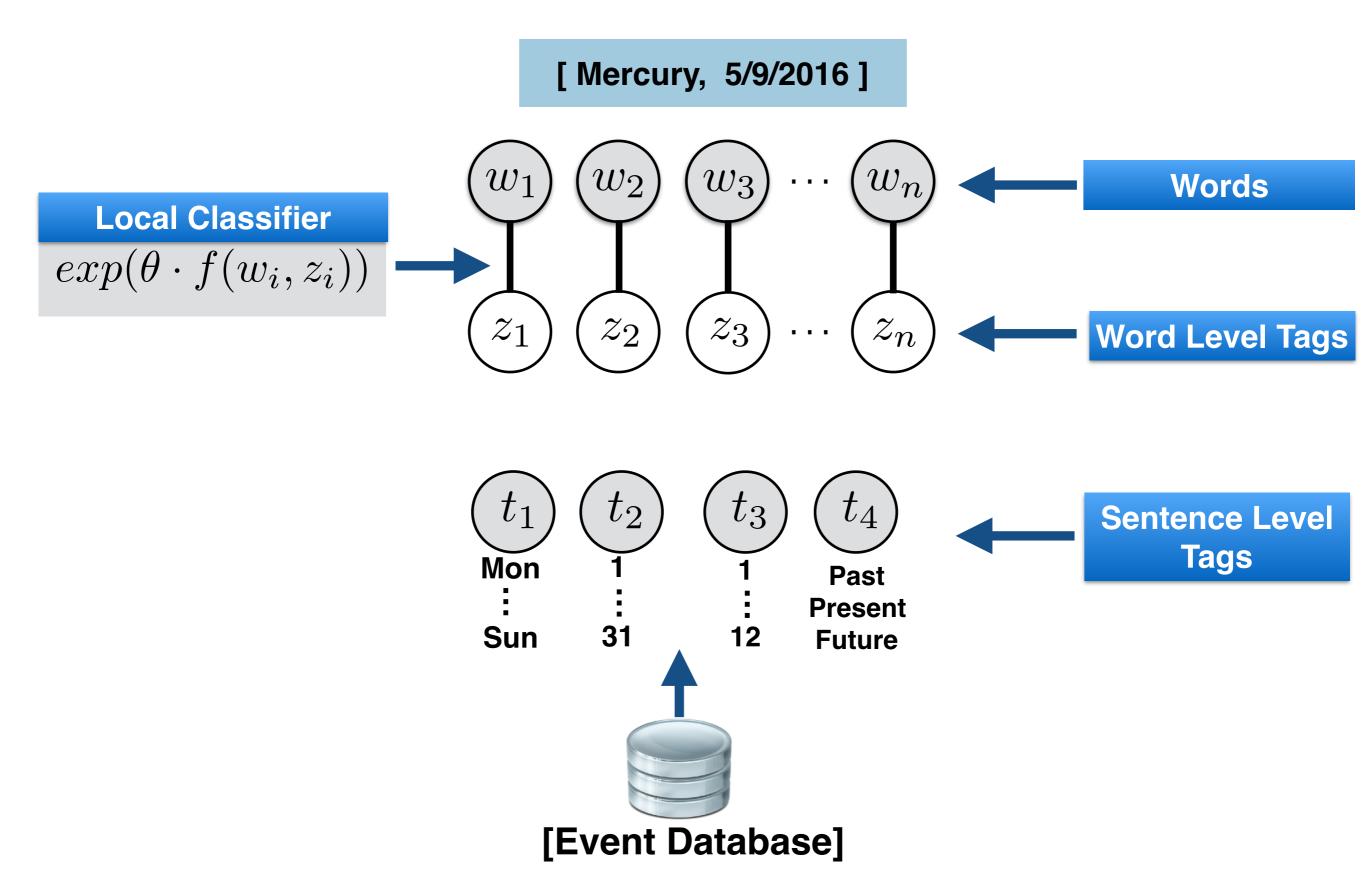


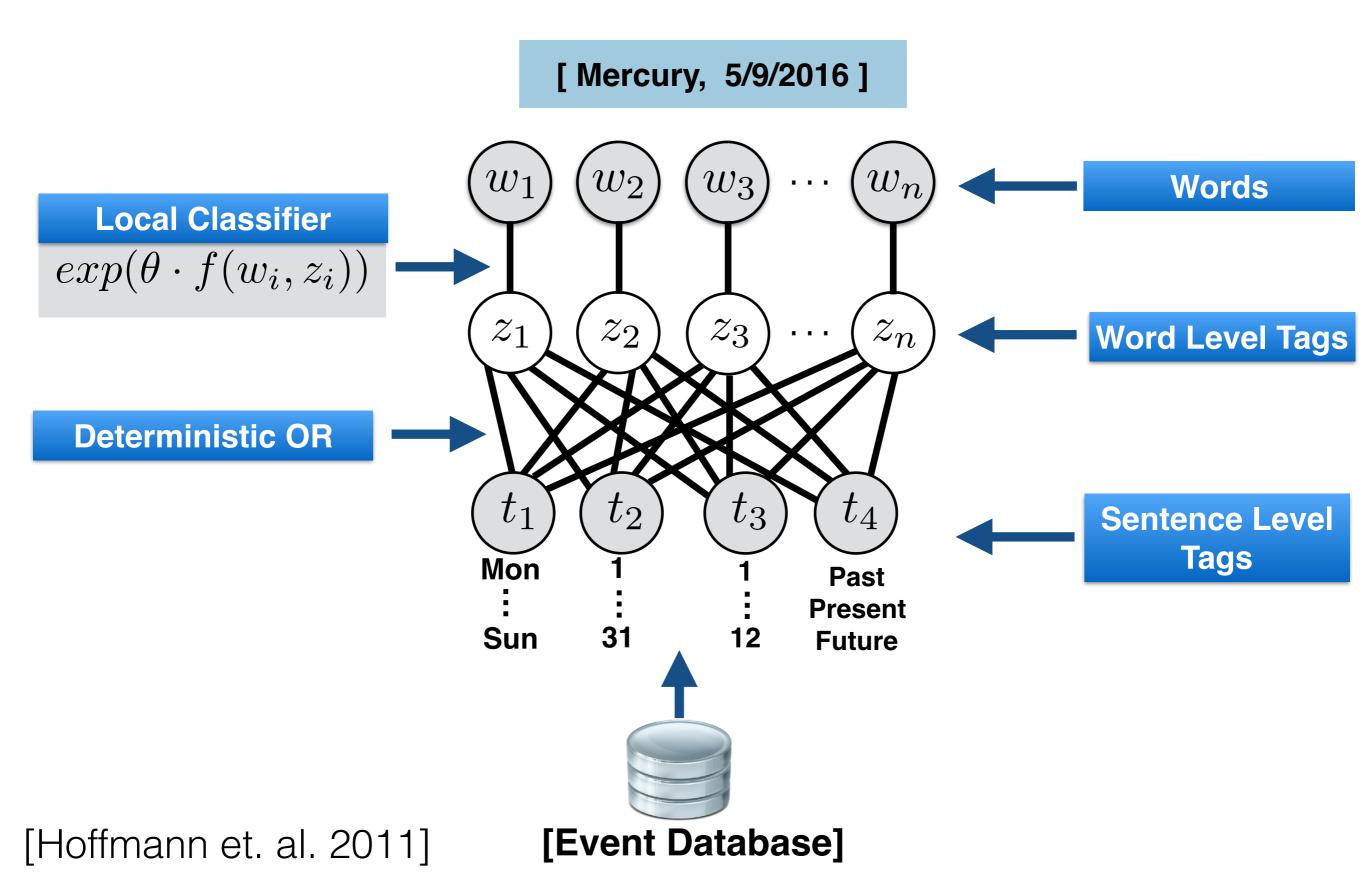


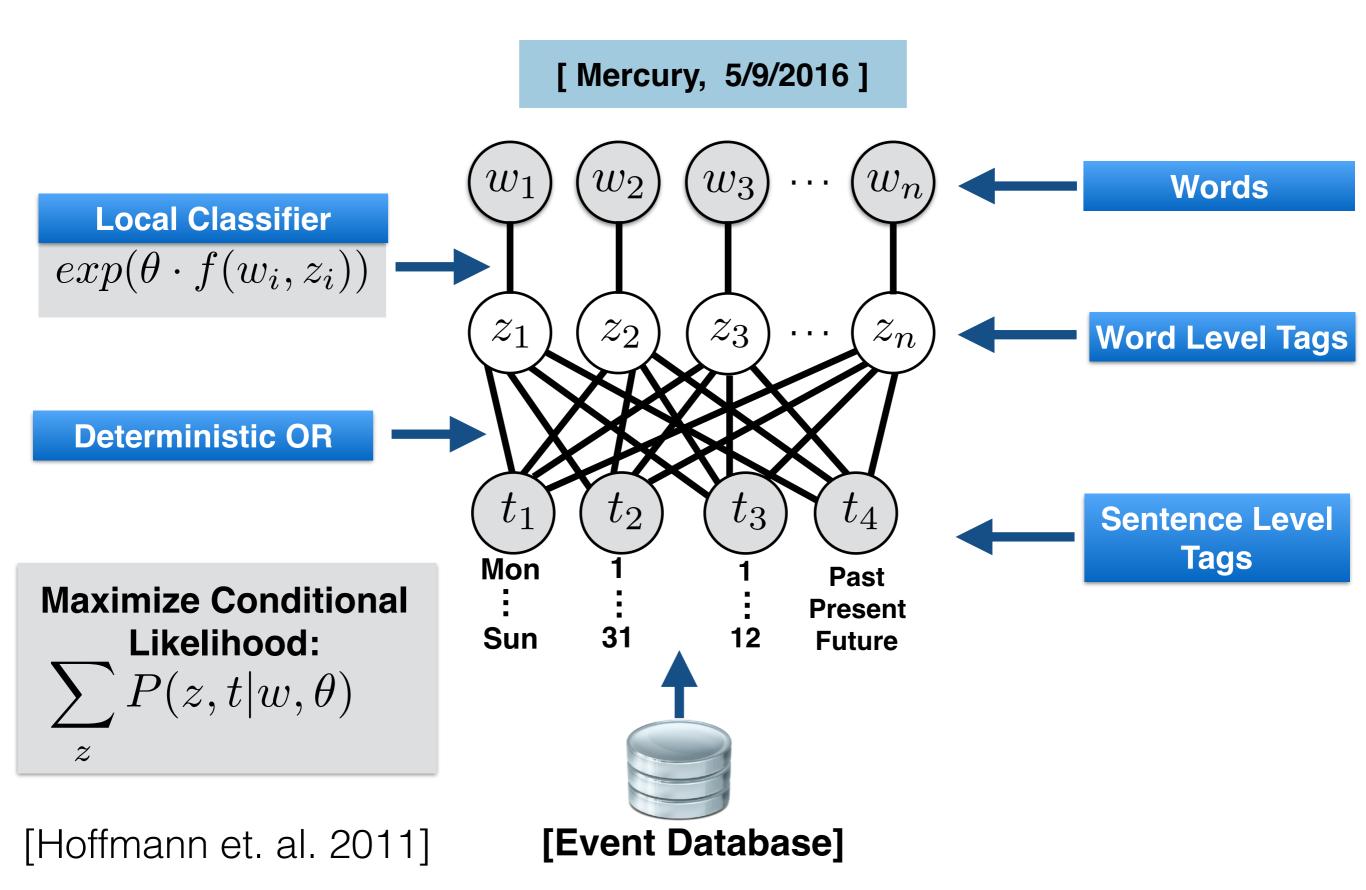


[Mercury, 5/9/2016]

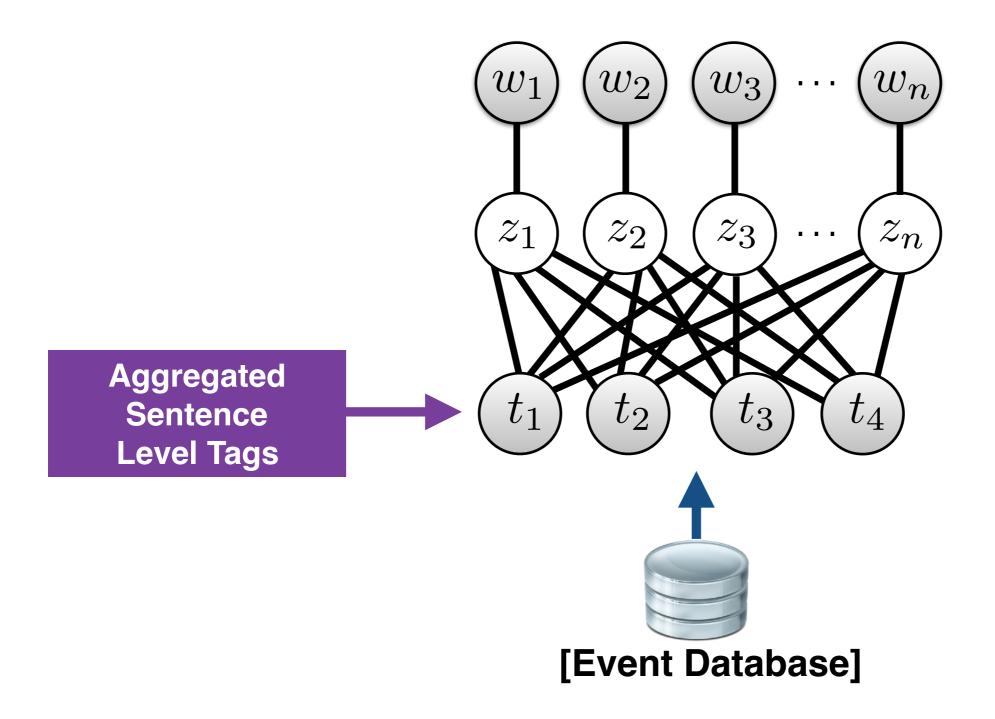




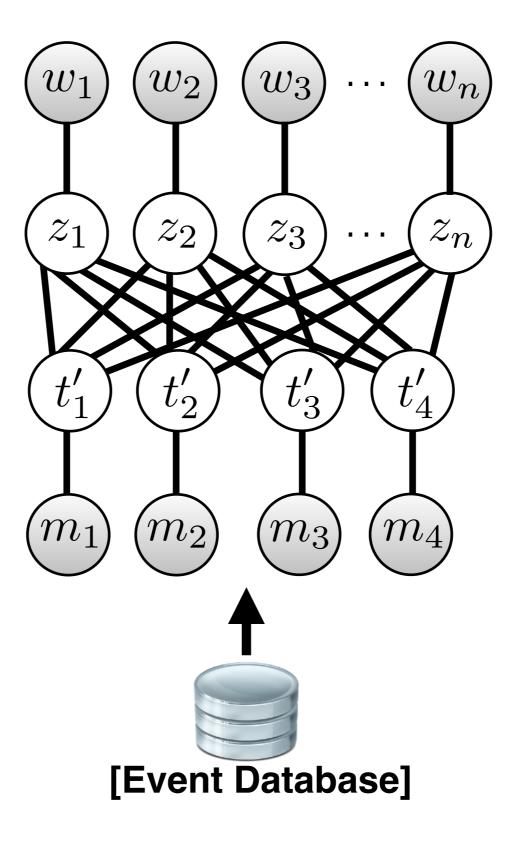




Missing Data Problem

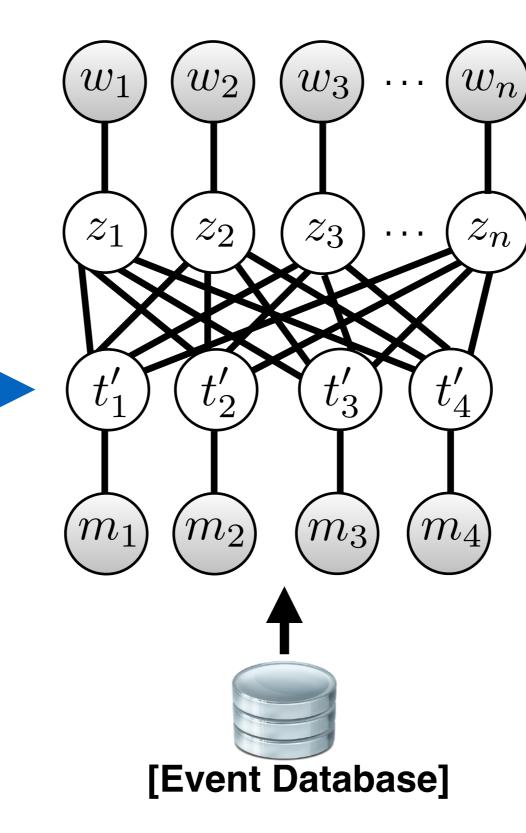


Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013]



Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013]

Mentioned in Text



 w_1

 w_2

 w_3

. . .

 w_n

Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013]

Implied by Event Date

Mentioned in Text

 z_2 z_n z_1 z_3 t'_4 t_1 t_3 m_2 m_3 m_4 m_1 [Event Database]

 w_2

 w_3

. . .

 w_n

 w_1

Missing Data Problem In Distant Supervision [Ritter, et. al. TACL 2013]

Mentioned in Text

Encourage Agreement

Implied by Event Date

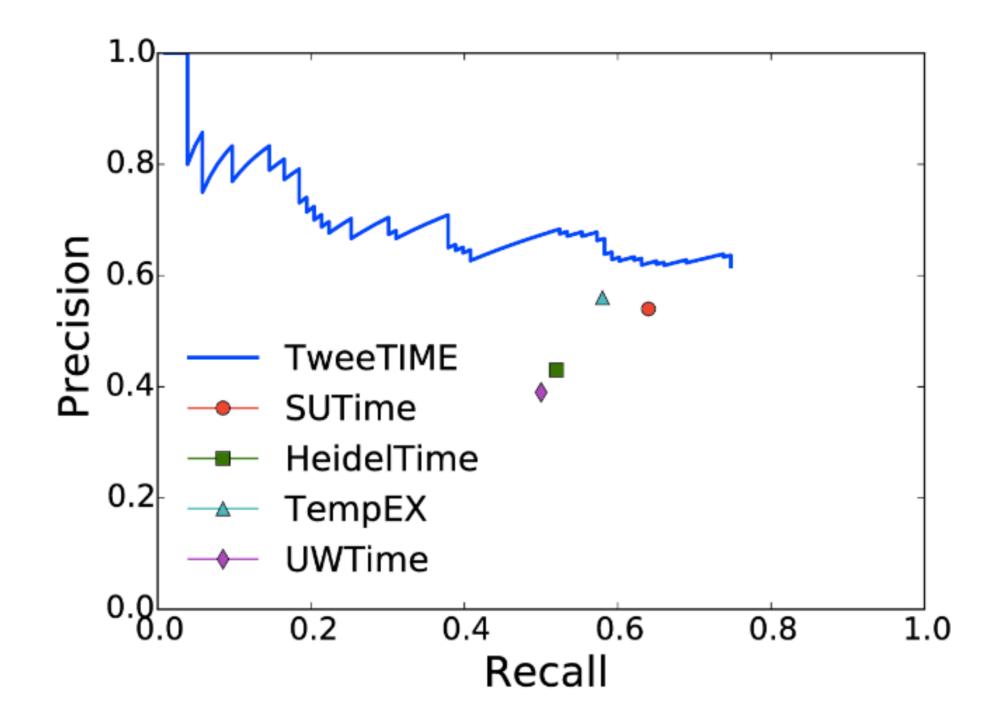
 z_n z_3 z_1 z_2 t'_4 t'_1 t_3 l_{0} m_2 m_3 m_1 m_4 [Event Database]

Example Tags

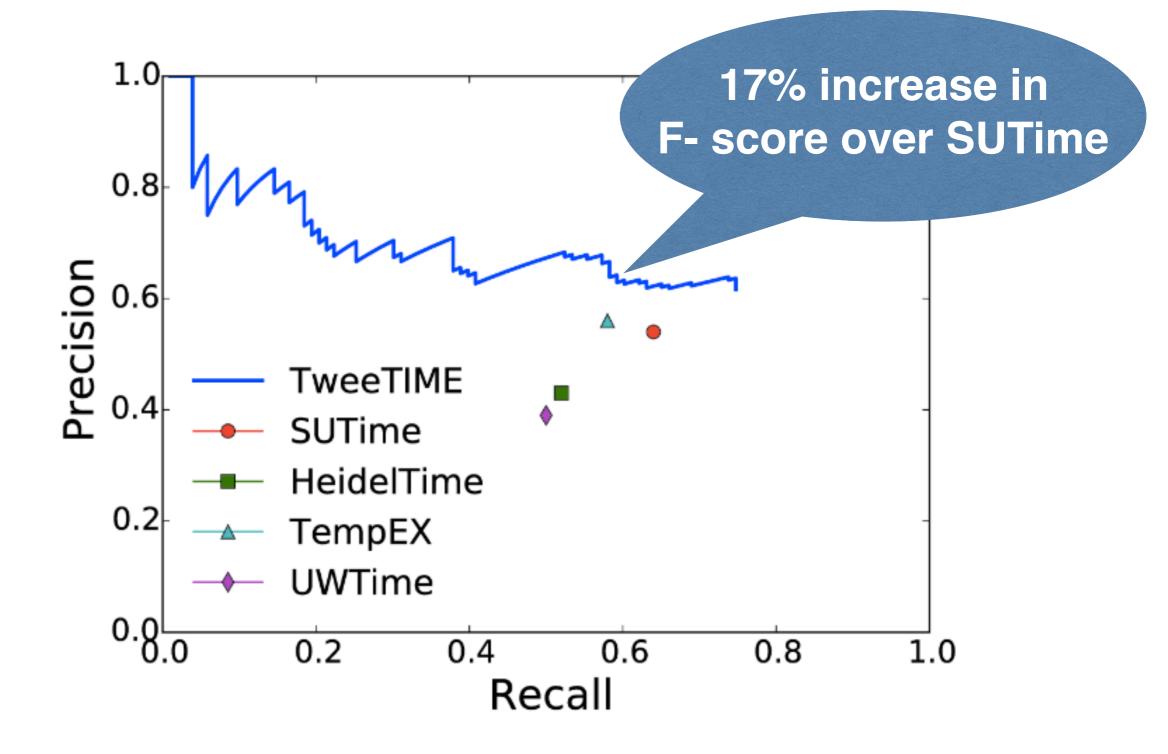
Word	Im	Hella	excited	for	tomorrow
Tag	NA	NA	Future	NA	Future

Word	P			Christmas	- 1 /	
Tag		I I	I I	December	I	I I

Evaluation



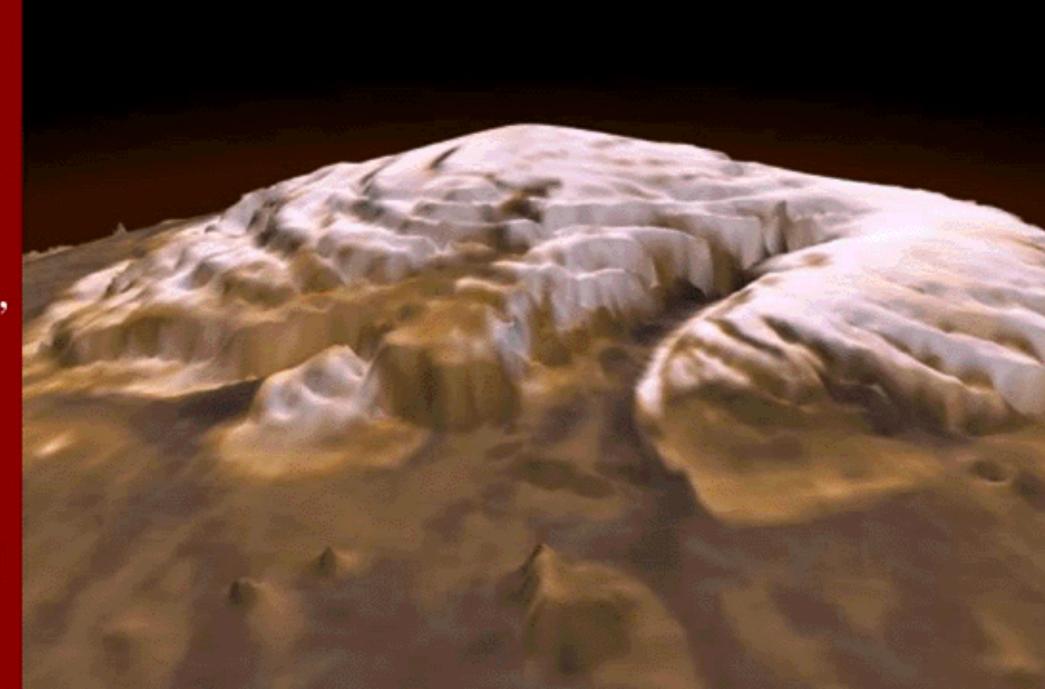
Evaluation



Following the Water: The Mars Exploration Program

Orlando Figueroa, Director

Dr. Jim Garvin, Lead Scientist

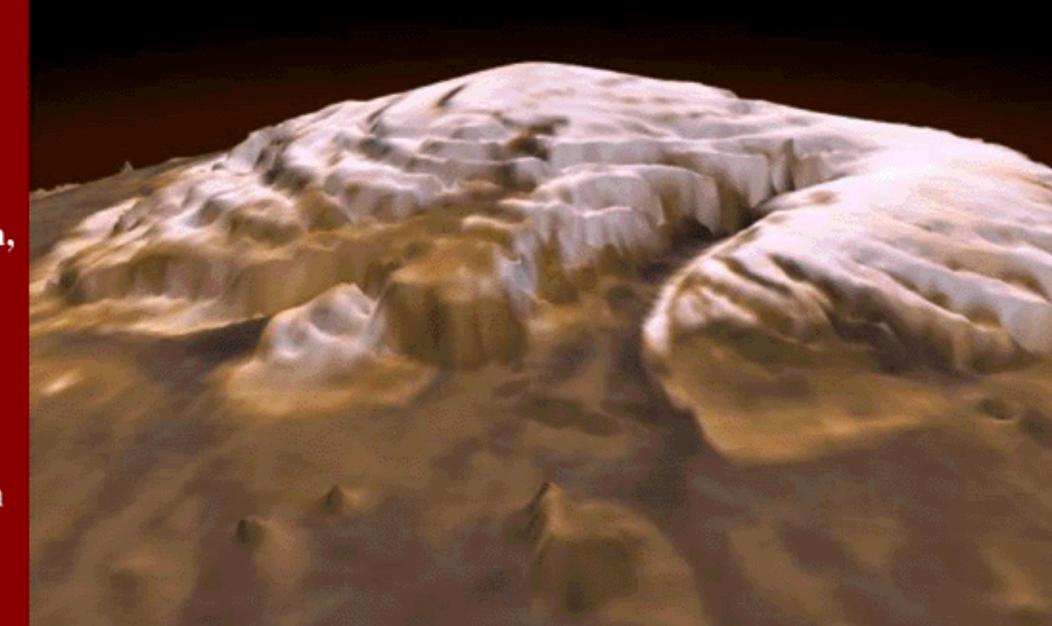


i Program

Where can we find NLU?

Orlando Figueroa, Director

Dr. Jim Garvin, Lead Scientist

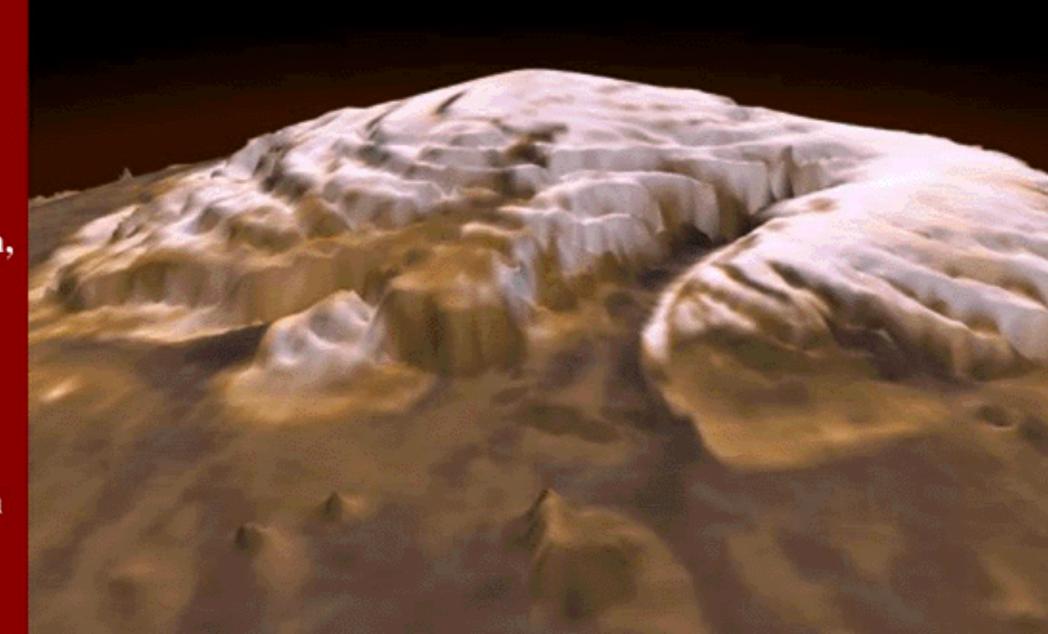


Program

Where can we find NLU? Follow the data!

Orlando Figueroa, Director

Dr. Jim Garvin, Lead Scientist



Program

Where can we find NLU? **Follow the data!**

Opportunistically Gathered Data:
Twitter Events (Time Normalization)
Billions of Internet Conversations

Dr. Jim Garvin, Lead Scientist

0

Program

Where can we find NLU? **Follow the data!**

Opportunistically Gathered Data:
Twitter Events (Time Normalization)
Billions of Internet Conversations

Design Models for the Data (rather than the other way around)

Mars Exploration Program NASA

0

D

L

Where can we find NLU? Follow the data!

Opportunistically Gathered Data:
Twitter Events (Time Normalization)
Billions of Internet Conversations

Design Models for the Data (rather than the other way around)

Thank You!

Mars Exploration Program NASA

0

D

L