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Light-Supervision

Prior Knowledge as Generalized Expectation
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Generalized Expectation




Learning from small labeled data




Leverage unlabeled data




Family 1: Expectation Maximization

[Dempster, Laird, Rubin, 1977]




Family 2: Graph-Based Methods

[Szummer, Jaakkola, 2002] [Zhu, Ghahramani, 2002]
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Family 3: Auxiliary-Task Methods

[Ando and Zhang, 2005]




Family 4: Boundary in Sparse Region

Transductive SVMs [Joachims, 1999]: Sparsity measured by margin

Entropy Regularization [Grandvalet & Bengio, 2005]: minimize label entropy
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lvalet & Bengio, 2005]: minimize label entropy

best solution?

Label Proportions
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Expectations on Labels | Features

Classifying Baseball versus Hockey

Generalized
Expectation

Tt

Human Brainstorm
Labeling a few
Effort Keywords

Traditional

ball || puck
field ice
j bat | | stick J:J

(Semi-)Supervised Training via Semi-Supervised Training via
Maximum Likelihood Generalized Expectation




Labeling Features
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Accuracy per Human Effort
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Prior Knowledge

Feature labels from humans

baseball/hockey classification

baseball hockey

hit puck

braves goal

runs nhl

many other sources

resources on the web SN et data from related tasks

DBLP Record 'conf/aaai/MaierTOJ10'

W. H. Enright. Improving the efficiency of matrix
operations in the numerical solution of stiff
ordinary differential equations. ACM Trans. Math.
Softw., 127-136, June 1978.

WIKIPEDIA

The Free Encyclopedia




Generalized Expectation (GE)

input variables = | output variables

g(}% i)

|

constraint features

returns 1 if X contains “hit” and y is baseball




Generalized Expectation (GE)

assume general CRF [Lafferty et al. 01]

! exp (HTE(X, y))

p(ylx;6) = Z

:Ep(y|x;9) [g(X7 Y)]

|

model distribution model features

model probability of baseball if x contains “hit”




Generalized Expectation (GE)

Ep(YIX;H) g(x,y)]

empirical distribution

(can be defined as)
model’s probability that
documents that contain “hit” are labeled baseball




Generalized Expectation (GE)

(soft) expectation constraint

S( (x) [Ep(y|x;9) [g(X7 Y)H)

|

score function

larger score if model expectation matches prior knowledge




Generalized Expectation (GE)

Objective Function

S(Eﬁ(x) [Ep(y|x;9) [g(Xv Y)H) T 7Q(H)

|

regularization




GE Score Functions
O(0) = S(Ejx) Epy|x:0) 8, ¥)]]) +7(0)

target expectations model expectations

g h g9==

squared error: Slg (0) = —H g — 8o HZ

target expectations model expectations
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KL divergence: Sk (0) = — Z g, log
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Estimating Parameters with GE

S(Es(x) [Epyixo)[&8(x,¥)]]) +7(0)

violation term: KL: v; = gg_z Sg. error. vU; = —2(9@ — gez')
0i

VoO(0) =v' (Ezs(x) By x0) 8% y)E(x,y) ]

violation

_Ep(y|x;9) [g(Xa Y)]Ep(ylx;Q) [f(Xv Y)T]]) + VQT((Q)

estimated covariance between model and constraint features




Learning About Unconstrained Features

Ty
unlabeled

)

Trained Model
4 )
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generalizes beyond
prior knowledge

learned through
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Generalized Expectation criteria

Easy communication with domain experts

* Inject domain knowledge into parameter estimation
- Like “informative prior”...

» ...but rather than the “language of parameters”
(difficult for humans to understand)

» ...use the “language of expectations”
(natural for humans)




11D Predlctlon

“classification” e.g. logistic regression

Example: Spam Filtering
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Structured Prediction

e.qg. “sequence labeling” Chinese Word Segmentation
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Natural Expectations
lead to Difficult Training Inference

“*AUTHOR field should be contiguous, only appearing once.”

Anna Popescu (2004), “Interactive Clustering,”

EDITOR EDITOR

Wei Li (Ed.), Learning Handbook, Athos Press,

LOCATION

Souroti.

p(yi-1, Vi, Vi, Yx) The downfall of GE.
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A framework providing easier inference for complex dependencies?

Structured Prediction Energy Networks

Deep Learning
+
Structured Prediction




Predlctlon

“classification” e.g. logistic regression

Example: Spam Filtering




Prediction

e.g. “sequence labeling”

Example: Chinese Word Segmentation
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“Hidden Unit Conditional Random Fields”
Maaten, Welling, Saul, AISTATS 2011













Structured Prediction

Example: Multi-label Document Classification

LONDON, March 3 - The U.K. Exported 535,460 tonnes of wheat
and 336,750 tonnes of barley in January, the Home Grown Cereals
Authority (HGCA) said, quoting adjusted Customs and Excise
figures. Based on the previous January figures i1ssued on February 9,
wheat exports increased by nearly 64,000 tonnes and barley by about
7,000 tonnes. The new figures bring cumulative wheat exports for
the period July 1/February 13 to 2.99 mln tonnes, and barley to 2.96




Structured Prediction

e.g. “multi-label classification”

Example: Multi-label Image Classification

E(Y,Y)

Y




Structured Prediction

Example: sky sky sky =
Scene Understanding -
Ky

tree S
E(Y,Y)
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Structured Prediction

E(Y,Y) *EXpressiVvity of dependencies
: Parsimony of parameterization

‘Tractabil Ity of inference




. . Samplin
Structured Prediction inference

Example: sky
Scene Understanding

tree

E(Y,Y)




. . Samplin
Structured Prediction inference

Example: sky
Scene Understanding

tree

E(Y,Y)




. . Samplin
Structured Prediction inference

Example: sky
Scene Understanding

tree

E(Y,Y)




. . Variational
Structured Prediction Inference
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Bayesian
Network

Sparsely connected
Hand-designed representations
Loopy/iterated inference
Cautious about capacity
“Statistically conscientious”

Deep Learning
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Densely connected

Learned, distributed representations
Feed-forward inference

Wild about high capacity

“Wild West” @
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Deep Learning

y = F(x; W) c® vy

Training Data . YN W
{X(Z), y(z)} @eeeo® 7
1=1

. W
Loss 2T

L = ZL( ()W (Z)) @0 000 97

Wi

@000 x

X1 X2 X3 X4

Training

arg min £
1%

OL(W Key tools:
W . — o 2V

(1) Back-propagation
aW (2) Stochastic gradient descent




Deep Learning
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Back-propagation  Deep Learning

y =0 (W30 (Wao (W1x))) ©® vy
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Back-propagation  Deep Learning
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Can get gradient of Loss wrt parameters at any depth from
(1) local partial derivative functions
(2) numeric gradient from above




Example:

CNNSs for

Object Classifice
in Images
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Lee, Grosse, Ranganath, Ng. "Convolutional Deep Beliet Networks tor Scalable Unsupervise



Motivation for SPENs

Use power of
deep learning for

207

structure learning : Y

- - High-order MRF
Provide an alternative e Chai MEE

to graphical models. o—%0-8-0-84¢
Fast
Very Slow

B|aC k' bOX Gradients \/
interaction with model.

Gradient Descent




Structured Prediction Energy Networks

[Belanger, McCallum, ICML 2016]

E(Y,Y) \Ijo[y()a yl] + \Ijl[yh yQ] + \112[3/27 y3]
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Structured Prediction Energy Networks

[Belanger, McCallum, ICML 2016]

E(Y,Y)
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Structured Prediction Energy Networks

[Belanger, McCallum, ICML 2016]

E(y,y) ?
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Structured Prediction Energy Networks

[Belanger, McCallum, ICML 2016]

E(y,y,z;X) ?
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Structured Prediction Energy Networks

[Belanger, McCallum, ICML 2016]

Energy network E(}_/‘, F(X)) E(y.y,z;x)

Soft prediction... found by gradient descent
— 3k

y = arg min E(}_/', F(X)) energy network
yel[0,1]-

Relax y, to be continuous

y € {0,1}* =y € [0,1}*

Feature Network




SPEN Inference Graph

gradient
step

H
N
A

Inference Step 3

energy
network

repeat...

gradient
Inference Step 2 y1 step

energy
network

Inference Step 1

initialization
network

feature

cached features
network

X



SPEN Inference Graph

energy
network

yO0




Gradient used to Modify Inputs

“A Neural Algorithm for Artistic Style”
[Gatys et al. 2015]

SPENs use similar idea:
Optimize energy using backprop all the way down to the raw pixels.




Learning Algorithm 1: e L 2018
Structured SVM

L . (Taskar et al., 2004; Tsochantaridis et al., 2004)

> max A, y) - (BE:x©) - By;x1))]

{x(, y®1 l

_I_

Loss-Augmented Inference
arg min (—A(y@, y) + E(¥; X(i)))
y w

Stochastic Gradient

oc
oW




Belanger, McCallum,

Learning Algorithm 2: CML 2017

End-to-end “backprop through inference”
[ =

Direct Risk Minimization

> 1 (. Aot ) )

Direct application of:
Justin Domke, AISTATS, 2012.
"Generic Methods for Optimization-Based Modeling”




Learning Algorithm 2 Graph

0L/0dy L(y.y")
step

Hessian-vector product energy
network

Domke, 2012.

Generic Methods for Optimization Based Modeling gradient

y1 step

Hessian-vector product energy
network

initialization
network

feature

cached features
network

X
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Light Supervision training of
Structured Prediction Energy Networks

(Turing completel)

1. Human writes arbitrary prior knowledge
(SPEN)

2. L.earn model with arbitrary dependencies.

3. Efficient inference by gradient descent.




AUTHOR AUTHOR

Anna Popescu (2004), “Interactive Clustering,”

EDITOR EDITOR

Wei L1 (Ed.), Learning Handbook, Athos Press,

LOCATION

Souroti.

Human writes arbitrary prior knowledge...
“AUTHOR field should be contiguous, only appearing once.”

...as a scoring function

score = 0
score
score
score
score
score

foreach AUTHOR non-contiguous

it has both JOURNAL & BOOKTITLE
foreach “using” not in TITLE
foreach [A-Z]\. not AUTHOR|EDITOR
1f PUBLISHER before JOURNAL ...

PR R




Why use ML if we get a
ruled-based scoring function?

- Doesn’t generalize
- examines just a few features
- SPENSs will learn correlated features, labels.

* No Iinference procedure just scores for given (x,y)
- stochastic optimization is slow
- SPENSs provide gradient-descent inference




Rooshenas, McCallum,...

Learning Algorithm 3: forthcoming

“ranking successive gradient steps”
> [aV(yn,x) = V(y1, %) — Bu(yn, %) + Ew(y, %))+

xcD




Preliminary Experiments

(...much more work and comparisons in future...)




Weak-Sup SPEN: simple test
Multi-label Document Classification

x = Medical bag-of-words y = multiple ICM-9-CD codes

[amount, cystourethrogram, diagnosed, episode, [593-70, 599-00]
evaluate, exam, fever, grade, growth, hematuria,

infection, interval, kidney, left, lower, occurred, patient,

pole, previously, purpose, reflux, renal, scar, scarring,

small, study, tract, urinary, vesicoureteral, voiding, year]

x = Human background knowledge
Keyword descriptions of ICM-9-CD codes. (Not gathering any labeled correlation knowledge.)

593-70: vesicoureteral, reflux, unspecified, nephropathy
V79-99: viral, chlamydial, infection, conditions, unspecified
753-00: renal, agenesis, dysgenesis

Scoring function gives +1 for each label:keyword cooccurrence.

ZI lj € y)I(J2* Nw;| > 0) — ymax(|y'] - 1,0)

Label, Keyword matches Sparsity constraint




Does the SPEN generalize

over the human scoring function?

ICM-9-CD code data set, evaluate F1 of label set

Human Scoring Function, Exhaustive Search

N=2 N=3 N=4 N=5 N=6

18.3 19.6 20.5 21.1 20.3 22.6

(~10x faster)




Weak-Sup SPEN: better test
Citation Field Extraction

x = Citation Token Sequence y = Seq. of Labels < |14

Anna Popescu (2004), “Interactive Clustering,” AUTHOR AUTHOR YEAR TITLE TITLE
Wei Li (Ed.), Learning Handbook, EDITOR, EDITOR EDITOR BOOKTITLE, BOOKTITLE
Athos Press, Souroti. PUBLISHER PUBLISHER LOCATION

x = Human background knowledge
Human-written scoring function. 50 lines of code. Written in ~1 hour.

score —= 1 foreach AUTHOR non-contiguous
score —= 1 if has both JOURNAL & BOOKTITLE
score —= 1 foreach “using” not in TITLE

~4000 unlabeled examples, O labeled. Scoring function advice:
- Penalties only, so 0 = best.
- Can use varying magnitudes, -1, -5, -10.
- Debug with some stochastic optimization.




Citation Field Extraction Accuracy

Method Token Time  Ave. V()
(no labeled data)  accuracy secrcitaton  score

GE tarm & wecaium 10| 37% |
V search 10 34% 14 -1.86
V search 100 39% 170 -0.98
V search 1000 42% 1240 | -0.62

SPEN 52% [0.0008 | ~-20 T e

Example text
Wright, A. K. Simple imperative polymorphism. Lisp and Symbolic Computation 8, 4 (Dec. 1995), 343-356.

V search 100 output

utput




Related Work

Deep Value Networks...
[Gygli, Norouzi, Angelova 2017 ICML]

= Matching magnitude (rather than just ranking).
= Hurts accuracy? 5% vs SPEN’s 52%

Constraint-Driven Learning
[Chang, Ratinov, Roth 2007 ACL]

- Supervised training = Pseudo-label data w/ constraints _,

Snorkel: Rapid Training Data Creation with Weak Supervision
[Ratner, Bach, Ehrenberg, Fries, Wu, Ré 2017 VLDB]

= Rules = Pseudo-labeled data = Supervised (self) training

Label-Free Supervision of NNs w/ ... Domain Knowledge
[Stewart, Ermon 2017 AAAI]

= Constraints = Loss function = Train feed-forward NN.




GE Related Work

Measurements

Liang, Jordan, Kleiq (2009)
N variational approximation;
log Elpx (bl6)] ~ log px (bE[#) FR LA,

/. \

Generalized variational . Posterior
Expectation approximation | Regularization

Mann’,,Druck, M&Callum (2007) Gra@é, Ganébev, Taskar (2007)
. MAP MAP '

Distribution approximation approximation

Matching \I / Coupled Semi-

Quadrianto et al. (2009) Constraint Supervised
Driven Learning

Learning Carlson et al. (2010)
Carlson et al. (2010)

\
\




Summary

- Generalized Expectation
 Learning from unlabeled data + “labeled features”
- Hard to do inference

- Structured Prediction Energy Networks
- Representation learning for output variables
+ Test-time inference by gradient descent
« New SPEN training method: Ranking

* Experiments
- Multi-label Classification: ICM-9
- Sequence labeling: Citation field extraction

* Next
* Training on corpus-wide expectations.
- Interactive tools for score function development.







