Tales from fMRI Learning from limited labeled data

Gaël Varoquaux *(nría* — PARIETAL

fMRI data

 $p \sim 100\,000$ voxels per map Heavily correlated + structured noise Low SNR: $\sim 5\% \sim -13\,\mathrm{dB}$

Brain response maps (activation) $n \sim$ Hundreds, maybe thousands

Resting-state (no cognitive labels) *n* ∼ 100–10 000 per subject
Thousands of subjects
No salient structure

TL;DR

Estimators with small sample complexity

Increasing the amount of data

Outline of this talk

1 Regularizing linear models

2 Covariance estimation

3 Merging data sources

1 Regularizing linear models

1 Regularizing linear models

1 Sample complexity, ℓ_1 versus ℓ_2 regularization

Def Sample complexity: *n* required for small error *w.h.p.*

Rotationally invariant estimators are data hungryThm For rotational invariant estimators,
sample complexity $> \mathcal{O}(p)$ [Ng 2004]

1 Sample complexity, ℓ_1 versus ℓ_2 regularization

Def Sample complexity: *n* required for small error *w.h.p.*

Rotationally invariant estimators are data hungry Thm For rotational invariant estimators, sample complexity > O(p) [Ng 2004] Sparsity, compressive sensing

To recover k non-zero coefficients, $n \sim k \log p$ [Wainwright 2009]

1 Sample complexity, ℓ_1 versus ℓ_2 regularization

Def Sample complexity: *n* required for small error *w.h.p.*

Rotationally invariant estimators are data hungryThm For rotational invariant estimators,
sample complexity > O(p)[Ng 2004]

Sparsity, compressive sensing To recover *k* non-zero coefficients, $n \sim k \log p$ [Wainwright 2009]

Fragile to correlations in the design Correlated design on support breaks ℓ_1 beyond repair

1 Structured sparsity: variations on Total variation

Total-variation penalization Impose sparsity on the gradient of the image:

$$ho({f w})=\ell_1(
abla{f w})$$

In fMRI: [Michel... 2011]

1 Structured sparsity: variations on Total variation

Total-variation penalization Impose sparsity on the gradient of the image:

$${\it p}({f w})=\ell_1(
abla {f w})$$

In fMRI: [Michel... 2011]

$$\begin{split} \mathbf{TV} &- \ell_1: \qquad \mathbf{Sparsity} + \mathbf{regions} \\ \hat{\mathbf{w}} &= \operatorname*{argmin}_{\mathbf{w}} I(\mathbf{y} - \mathbf{X} \, \mathbf{w}) + \lambda \big(\rho \, \ell_1(\mathbf{w}) + (1 - \rho) \, \mathbf{TV}(\mathbf{w}) \big) \\ &I: \text{ data-fit term} \\ & \text{[Baldassarre... 2012, Gramfort... 2013]} \end{split}$$

1 Structured sparsity: variations on Total variation

Good prediction performance

Segment the relevant regions

Good prediction performance

Segment the relevant regions

Tedious convergence

1 Hyper-parameter selection

Hyper-parameter setting important for ℓ_1 models

Cross-validation, rather than hold-out, for small n

1 Hyper-parameter selection

1 Hyper-parameter selection

1 Fixing sparsity with clustering

Idea: cluster together correlated features

2

clustering to form reduced features

sparse linear model on reduced features

[Varoquaux... 2012]

1 Fixing sparsity with clustering and bagging

Idea: cluster together correlated features

- 1 loop: perturb randomly data
- 2 clustering to form reduced features
 - sparse linear model on reduced features
 - accumulate non-zero features

3

4

Bagging:

Clustering for dimension reduction

- Feature selection
- Linear model
- Hyper-parameter selection (CV-bagging)

Empirical results

Bagging:

Clustering for dimension reduction

- Feature selection
- Linear model

Hyper-parameter selection (CV-bagging)

Empirical results

Bagging:

Clustering for dimension reduction

- Feature selection
- Linear model

Hyper-parameter selection (CV-bagging)

Empirical results

Lessons learned trying to regularize

- Sparsity is not enough: structure is needed
- Optimal sparse-structured is finicky and expensive
- Ensemble greedy approaches

Empirical results

2 Covariance estimation

Graphs of brain function Covariances capture interactions between regions

2 Gaussian graphical models

Multivariate normal:

$$\mathcal{P}(\mathbf{X}) \propto \sqrt{|\mathbf{\Sigma}^{-1}|} e^{-rac{1}{2}\mathbf{X}^{\mathcal{T}}\mathbf{\Sigma}^{-1}\mathbf{X}}$$

Model parametrized by inverse covariance matrix, $\mathbf{K} = \mathbf{\Sigma}^{-1}$: *conditional* covariances $\mathbf{X}_{i} \perp \mathbf{X}_{i} \Leftrightarrow \mathbf{K}_{i,j} = \mathbf{0}$

Graphical lasso: ℓ_1 -penalized MLE Maximum-likelihood of **K** needs $\mathcal{O}(p^2)$ samples. ℓ_1 enables support recovery [Ravikumar... 2011]

2 Gaussian graphical models

Multivariate normal:

$$\mathcal{P}(\mathbf{X}) \propto \sqrt{|\mathbf{\Sigma}^{-1}|} e^{-rac{1}{2}\mathbf{X}^{\mathcal{T}}\mathbf{\Sigma}^{-1}\mathbf{X}}$$

Model parametrized by inverse covariance matrix, **Sample complexity of recovering** *s* **edges** $n = O((s + p) \log(p)) \Rightarrow K_{j} = 0$ $s = o(\sqrt{p})$

Graphical lasso: ℓ_1 -penalized MLE Maximum-likelihood of **K** needs $\mathcal{O}(p^2)$ samples. ℓ_1 enables support recovery [Ravikumar... 2011]

2 Larger *n*: multi-subject sparse covariance

Common independence structure but different connection values

2 Larger n: multi-subject sparse covariance

Common independence structure but different connection values

 $\{\mathbf{K}^{s}\} = \underset{\{\mathbf{K}^{s} \succ 0\}}{\operatorname{argmin}} \sum_{s} \mathcal{L}(\hat{\mathbf{\Sigma}}^{s} | \mathbf{K}^{s}) + \lambda \ell_{21}(\{\mathbf{K}^{s}\})$ Multi-subject data fit, ℓ_1 on the connections of Likelihood

the ℓ_2 on the subjects

Our goal may be to compare patients

Brain graphs are not that sparse Between-subject differences may be sparse [Belilovsky... 2016]

Which risk should we minimize on the covariance?

2 James-Stein and Ledoit-Wolf

James-Stein shrinkage

To estimate a mean θ : $\hat{\theta}_{JS} = (1 - \alpha) \theta_{MLE} + \alpha \theta_{guess}$ whith $\alpha \sim \frac{\sigma^2}{n \|\theta - \theta_{guess}\|}$ $\hat{\theta}_{JS}$ dominates $\hat{\theta}_{MLE}$ for the MSE

$$\begin{split} \textbf{Ledoit-Wolf covariance shrinkage estimator} \\ \hat{\boldsymbol{\Sigma}}_{LW} &= (1 - \alpha) \, \boldsymbol{\Sigma}_{\mathsf{MLE}} \, + \, \alpha \, \mathsf{trace}(\boldsymbol{\Sigma}_{\mathsf{MLE}}) \, \textbf{I} \\ & \text{with } \alpha \text{ oracle for } n \to \infty, \frac{n}{p} \to \mathsf{cst} \\ \hat{\boldsymbol{\Sigma}}_{LW} \text{ dominates } \hat{\boldsymbol{\Sigma}}_{MLE} \text{ for the MSE} \\ & \text{[Ledoit and Wolf 2004]} \end{split}$$

2 James-Stein and Ledoit-Wolf

James-Stein shrinkage

To estimate a mean θ :

$$\hat{ heta}_{JS} = (1 - lpha) \, heta_{\mathsf{MLE}} \ + \ lpha \, heta_{\mathsf{guess}} \quad \mathsf{whith} \ lpha \sim rac{\sigma^2}{n \| heta - heta_{\mathsf{guess}} \|}$$

For inter-subject comparison, Ledoit-Wolf performs as well as ℓ_1 estimators, but **faster & less brittle**.

Ledoit-Wolf covariance shrinkage estimator

$$\hat{\boldsymbol{\Sigma}}_{LW} = (1 - \alpha) \boldsymbol{\Sigma}_{\mathsf{MLE}} + \alpha \operatorname{trace}(\boldsymbol{\Sigma}_{\mathsf{MLE}}) \mathbf{I}$$

with α oracle for $n \to \infty, \frac{n}{p} \to \mathsf{cst}$

 $\hat{\boldsymbol{\Sigma}}_{LW}$ dominates $\hat{\boldsymbol{\Sigma}}_{MLE}$ for the MSE [Ledoit and Wolf 2004]

2 James-Stein shrinkage for population models

Shrinkage with order-2 moment Shrinkage = MMSE = Bayesian posterior mean for Gaussian distribution 4.1.2 [Lehmann and Casella 2006] \Rightarrow Use prior $\mathcal{N}(\Sigma_0, \Lambda_0)$ learned on population * Λ_0 is a covariance on covariances

[Rahim... 2017, 2018]

2 James-Stein shrinkage for population models

Shrinkage with order-2 moment Shrinkage = MMSE = Bayesian posterior mean for Gaussian distribution 4.1.2 [Lehmann and Casella 2006] \Rightarrow Use prior $\mathcal{N}(\Sigma_0, \Lambda_0)$ learned on population * Λ_0 is a covariance on covariances

Information geometry / covariance manifold

Covariances are not a vector space Computations on the manifold Turns MLE into an MSE

PoSCE: Population shrinkage of covariance

G Varoquaux

[Rahim... 2017, 2018]

2 James-Stein shrinkage for population models

3 Merging data sources

More data trumps fancy regularizations

[Mensch... 2017]

3 There is plenty of fMRI data

Dozens of thousands of fMRI sessions, but terribly heterogeneous

3 There is plenty of fMRI data

Dozens of thousands of fMRI sessions, but terribly heterogeneous

Unsupervised learning on fMRI data
 Multi-task learning across studies

Heterogeneity in the behavior Formal modeling of behavior is a open

knowledge representation problem

3 Mapping cognition across studies labels

Cognitive label across many studies? Very difficult to assign

👁 Visual Auditorv 🗘 Foot 🥊 Hand **Calculation** W Reading Checkboard Face Place Object Digit •• Saccade

3 Mapping cognition across studies labels

Great for multiple output (tasks)

Great for multiple output (tasks)

Millions of parameters, thousands of data points

[Bengio 2009]

Great for multiple output (tasks)

Millions of parameters, thousands of data points
 Simplify

Great for multiple output (tasks)

Millions of parameters, thousands of data points

Simplify simplify more

Great for multiple output (tasks)

Millions of parameters, thousands of data points

Simplify simplify more

[Bzdok... 2015]

3 Unsupervised learning for spatial atoms

3 Unsupervised learning for spatial atoms

Adapted representations that capture local correlations

3 Unsupervised learning for spatial atoms

Adapted representations that capture local correlations
 More data is always better

computational cost [Mensch... 2016]

3 Multi-task across studies

Decode in each study
 But learn representations across
 Loss-engineering & regularization

[Mensch... 2017]

3 Multi-task across studies

Learning with limited labeled data: fMRI lessons

- Sparse models are unstable and need ensembling
- Parameter selection is unstable and needs ensembling
- *l*₂ shrinkage is powerful, in particular with good mean & covariance
- Unsupervised learning of representations
- Multi-task to pool data

Learning with limited labeled data: fMRI lessons

- Sparse models are unstable and need ensembling
- Parameter selection is unstable and needs ensembling
- *l*₂ shrinkage is powerful, in particular with good mean & covariance
- Unsupervised learning of representations
- Multi-task to pool data
- Software for machine learning in neuroimaging: http://nilearn.github.io

References I

- L. Baldassarre, J. Mourao-Miranda, and M. Pontil. Structured sparsity models for brain decoding from fMRI data. In *PRNI*, page 5, 2012.
- E. Belilovsky, G. Varoquaux, and M. B. Blaschko. Testing for differences in gaussian graphical models: applications to brain connectivity. In *Advances in Neural Information Processing Systems*, pages 595–603, 2016.
- Y. Bengio. Learning deep architectures for ai. *Foundations and trends in Machine Learning*, 2:1–127, 2009.
- D. Bzdok, M. Eickenberg, O. Grisel, B. Thirion, and G. Varoquaux. Semi-supervised factored logistic regression for high-dimensional neuroimaging data. In *Advances in neural information processing systems*, pages 3348–3356, 2015.
- M. Eickenberg, E. Dohmatob, B. Thirion, and G. Varoquaux. Total variation meets sparsity: statistical learning with segmenting penalties. *MICCAI*, 2015.

References II

- A. Gramfort, B. Thirion, and G. Varoquaux. Identifying predictive regions from fMRI with TV-L1 prior. In *PRNI*, page 17, 2013.
- A. Hoyos-Idrobo, G. Varoquaux, Y. Schwartz, and B. Thirion. Frem – scalable and stable decoding with fast regularized ensemble of models. *NeuroImage*, 2017.
- O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices. *J. Multivar. Anal.*, 88: 365, 2004.
- E. L. Lehmann and G. Casella. *Theory of point estimation*. Springer Science & Business Media, 2006.
- G. Maillard, S. Arlot, and M. Lerasle. Cross-validation improved by aggregation: Agghoo. *arXiv preprint arXiv:1709.03702*, 2017.
- J. McInerney. An empirical bayes approach to optimizing machine learning algorithms. In *Advances in Neural Information Processing Systems*, pages 2709–2718, 2017.

References III

- A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Dictionary learning for massive matrix factorization. In *International Conference on Machine Learning*, pages 1737–1746, 2016.
- A. Mensch, J. Mairal, B. Thirion, and G. Varoquaux. Learning neural representations of human cognition across many fMRI studies. In *NIPS*, 2017.
- V. Michel, A. Gramfort, G. Varoquaux, E. Eger, and B. Thirion. Total variation regularization for fMRI-based prediction of behavior. *Medical Imaging, IEEE Transactions on*, 30:1328, 2011.
- A. Ng. Feature selection, 11 vs. 12 regularization, and rotational invariance. In *Proceedings of the twenty-first international conference on Machine learning*, page 78, 2004.

References IV

- M. Rahim, B. Thirion, and G. Varoquaux. Population-shrinkage of covariance to estimate better brain functional connectivity. In *International Conference on Medical Image Computing and Computer-Assisted Intervention*, pages 460–468. Springer, 2017.
- M. Rahim, B. Thirion, and G. Varoquaux. PoSCE: Population shrinkage of covariance to estimate better brain functional connectivity. *submitted*, 2018.
- P. Ravikumar, M. J. Wainwright, G. Raskutti, B. Yu, ...
 High-dimensional covariance estimation by minimizing *l*₁-penalized log-determinant divergence. *Electronic Journal of Statistics*, 5:935–980, 2011.
- G. Varoquaux and B. Thirion. How machine learning is shaping cognitive neuroimaging. *GigaScience*, 3:28, 2014.
- G. Varoquaux, A. Gramfort, J. B. Poline, and B. Thirion. Brain covariance selection: better individual functional connectivity models using population prior. In *NIPS*. 2010.

References V

G. Varoquaux, A. Gramfort, and B. Thirion. Small-sample brain mapping: sparse recovery on spatially correlated designs with randomization and clustering. In *ICML*, page 1375, 2012.

M. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ℓ_1 -constrained quadratic programming. *Trans Inf Theory*, 55:2183, 2009.