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fMRI data
p ∼ 100 000 voxels per map
Heavily correlated + structured noise
Low SNR: ∼ 5% ∼ −13 dB

Brain response maps (activation)
n ∼ Hundreds, maybe thousands

Resting-state (no cognitive labels)
n ∼ 100–10 000 per subject
Thousands of subjects
No salient structure
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TL;DR

Estimators with small sample complexity

Increasing the amount of data
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Outline of this talk

1 Regularizing linear models

2 Covariance estimation

3 Merging data sources
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1 Regularizing linear models

sign(X w + e) = y

Design
matrix × Coefficients = Target

p ∼ 50 000
n ∼ 100 per category

From sparsity to structure, to ensembling
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1 Sample complexity, `1 versus `2 regularization
Def Sample complexity: n required for small error w.h.p.

Rotationally invariant estimators are data hungry
Thm For rotational invariant estimators,

sample complexity > O(p) [Ng 2004]

Sparsity, compressive sensing
To recover k non-zero coefficients, n ∼ k log p

[Wainwright 2009]

SVM ridge

`1
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1 Sample complexity, `1 versus `2 regularization
Def Sample complexity: n required for small error w.h.p.

Rotationally invariant estimators are data hungry
Thm For rotational invariant estimators,

sample complexity > O(p) [Ng 2004]

Sparsity, compressive sensing
To recover k non-zero coefficients, n ∼ k log p

[Wainwright 2009]

SVM ridge `1Fragile to correlations in the design
Correlated design on support breaks
`1 beyond repair
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1 Structured sparsity: variations on Total variation

Total-variation penalization
Impose sparsity on the gradient
of the image:

p(w) = `1(∇w)

In fMRI: [Michel... 2011]

TV-`1: Sparsity + regions

ŵ = argmin
w

l(y− X w) + λ
(
ρ `1(w) + (1− ρ)TV (w)

)
l : data-fit term [Baldassarre... 2012, Gramfort... 2013]
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Total-variation penalization
Impose sparsity on the gradient
of the image:

p(w) = `1(∇w)

In fMRI: [Michel... 2011]

TV-`1: Sparsity + regions

ŵ = argmin
w

l(y− X w) + λ
(
ρ `1(w) + (1− ρ)TV (w)

)
l : data-fit term [Baldassarre... 2012, Gramfort... 2013]

Analysis sparsity: ‖Kw‖21 [Eickenberg... 2015]
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1 TV-`1 works

Good prediction performance

Segment the relevant regions
SVM ridge sparse TV-`1
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1 TV-`1 works

Good prediction performance

Segment the relevant regions
SVM ridge sparse TV-`1

Computational costly
Hyper-parameter selection brittle
Tedious convergence
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1 Hyper-parameter selection
Hyper-parameter setting important for `1 models
Cross-validation, rather than hold-out, for small n
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1 Hyper-parameter selection

Cross-validation
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1 Hyper-parameter selection

CV-bagging

Bagging reduces variance
[Maillard... 2017, McInerney 2017]G Varoquaux 10



1 Fixing sparsity with clustering
Idea: cluster together correlated features

1 loop: perturb randomly data

1 clustering to form reduced features

2 sparse linear model on reduced features

4 accumulate non-zero features

[Varoquaux... 2012]
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1 Fixing sparsity with clustering and bagging
Idea: cluster together correlated features

1 loop: perturb randomly data

2 clustering to form reduced features

3 sparse linear model on reduced features

4 accumulate non-zero features

[Varoquaux... 2012]
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1 FREM: ensembling everything [Hoyos-Idrobo... 2017]
Bagging:

Clustering for dimension reduction
Feature selection
Linear model
Hyper-parameter selection (CV-bagging)

Empirical results
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1 FREM: ensembling everything [Hoyos-Idrobo... 2017]
Bagging:

Clustering for dimension reduction
Feature selection
Linear model
Hyper-parameter selection (CV-bagging)

Empirical results

Lessons learned trying to regularize
Sparsity is not enough: structure is needed
Optimal sparse-structured is finicky and expensive
Ensemble greedy approaches
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2 Covariance estimation

Graphs of brain function
Covariances capture interactions

between regions
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2 Gaussian graphical models
Multivariate normal:

P(X) ∝
√
|Σ−1|e−1

2XT Σ−1X

Model parametrized by inverse covariance matrix,
K = Σ−1: conditional covariances

Xi ⊥⊥ Xj ⇔ Ki ,j = 0

Graphical lasso: `1-penalized MLE
Maximum-likelihood of K needs O(p2) samples.
`1 enables support recovery [Ravikumar... 2011]
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2XT Σ−1X

Model parametrized by inverse covariance matrix,
K = Σ−1: conditional covariances

Xi ⊥⊥ Xj ⇔ Ki ,j = 0

Graphical lasso: `1-penalized MLE
Maximum-likelihood of K needs O(p2) samples.
`1 enables support recovery [Ravikumar... 2011]

Sample complexity of recovering s edges
n = O((s + p) log(p))
s = o(√p)
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2 Larger n: multi-subject sparse covariance

[Varoquaux... 2010]

Common independence structure but different
connection values

{Ks} = argmin
{Ks�0}

∑
s
L(Σ̂s |Ks) + λ `21({Ks})

Multi-subject data fit,
Likelihood

Group-lasso penalization
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2 Larger n: multi-subject sparse covariance

[Varoquaux... 2010]

Common independence structure but different
connection values

{Ks} = argmin
{Ks�0}

∑
s
L(Σ̂s |Ks) + λ `21({Ks})

Multi-subject data fit,
Likelihood

`1 on the connections of
the `2 on the subjects
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2 Is sparse recovery the right question?

Our goal may be to compare patients

`1 recovery is unstable

Brain graphs are not that sparse
Between-subject differences may be sparse

[Belilovsky... 2016]

Which risk should we minimize
on the covariance?
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2 James-Stein and Ledoit-Wolf
James-Stein shrinkage
To estimate a mean θ:
θ̂JS = (1− α) θMLE + α θguess whith α ∼ σ2

n‖θ−θguess‖

θ̂JS dominates θ̂MLE for the MSE

Ledoit-Wolf covariance shrinkage estimator
Σ̂LW = (1− α) ΣMLE + α trace(ΣMLE) I

with α oracle for n→∞, n
p → cst

Σ̂LW dominates Σ̂MLE for the MSE
[Ledoit and Wolf 2004]
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n‖θ−θguess‖

θ̂JS dominates θ̂MLE for the MSE

Ledoit-Wolf covariance shrinkage estimator
Σ̂LW = (1− α) ΣMLE + α trace(ΣMLE) I

with α oracle for n→∞, n
p → cst

Σ̂LW dominates Σ̂MLE for the MSE
[Ledoit and Wolf 2004]

For inter-subject comparison, Ledoit-Wolf performs
as well as `1 estimators, but faster & less brittle.
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2 James-Stein shrinkage for population models

[Rahim... 2017, 2018]

Shrinkage with order-2 moment
Shrinkage = MMSE = Bayesian posterior mean
for Gaussian distribution 4.1.2 [Lehmann and Casella 2006]
⇒ Use prior N (Σ0,Λ0) learned on population

? Λ0 is a covariance on covariances

Information geometry / covariance manifold
Covariances are not a vector space
Computations on the manifold
Turns MLE into an MSE

PoSCE: Population shrinkage
of covariance
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2 James-Stein shrinkage for population models

[Rahim... 2017, 2018]

Shrinkage with order-2 moment
Shrinkage = MMSE = Bayesian posterior mean
for Gaussian distribution 4.1.2 [Lehmann and Casella 2006]
⇒ Use prior N (Σ0,Λ0) learned on population

? Λ0 is a covariance on covariances

Information geometry / covariance manifold
Covariances are not a vector space
Computations on the manifold
Turns MLE into an MSE

PoSCE: Population shrinkage
of covariance

-60 -40 -20 0 +20 +40 +60
Relative log-likelihood w.r.t. the mean

Correlation matrix

GraphLasso CV

Ledoit-Wolf

Identity shrinkage CV

Prior shrinkage CV

PoSCE

Inter-session reproducibility within subjects

Anisotropic shrinkage for the win
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3 Merging data sources

More data trumps fancy regularizations

[Mensch... 2017]
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3 There is plenty of fMRI data
Dozens of thousands of fMRI sessions,

but terribly heterogeneous

Descriptions of behavior
and cognition

Measurements
of brain activity

Heterogeneity in the behavior
Formal modeling of behavior is a open

knowledge representation problem
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3 There is plenty of fMRI data
Dozens of thousands of fMRI sessions,

but terribly heterogeneous

Descriptions of behavior
and cognition

Measurements
of brain activity

Heterogeneity in the behavior
Formal modeling of behavior is a open

knowledge representation problem

Unsupervised learning on fMRI data
Multi-task learning across studies
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3 Mapping cognition across studies labels

Cognitive label across many studies?
Very difficult to assign Visual

Auditory
Foot
Hand
Calculation
Reading
Checkboard
Face
Place
Object
Digit
Saccade
...
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3 Mapping cognition across studies labels

Cognitive label across many studies?
Very difficult to assign Visual

Auditory
Foot
Hand
Calculation
Reading
Checkboard
Face
Place
Object
Digit
Saccade
...

”Multi-task learning”
Solve many related but different problems
Learn commonalities
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3 Sharing representations across tasks

[Bengio 2009]

...

Great for multiple output (tasks)

Millions of parameters, thousands of data points

Simplify
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3 Sharing representations across tasks

2

2

factored linear model

Great for multiple output (tasks)

Millions of parameters, thousands of data points

Simplify simplify more
[Bzdok... 2015]
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3 Unsupervised learning for spatial atoms
tim

e
voxels

tim
e

voxels

tim
e voxels

Y +E · S=

25

N

Decomposing time series into spatial maps
with sparsity to localize atoms
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3 Unsupervised learning for spatial atoms
tim

e
voxels

tim
e

voxels

tim
e voxels

Y +E · S=

25

N

Decomposing time series into spatial maps
with sparsity to localize atoms

1Tb data 50Gb data

Adapted representations that capture local correlations
More data is always better

computational cost [Mensch... 2016]
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3 Multi-task across studies

2

2

[Mensch... 2017]

Decode in each study
But learn representations across

Loss-engineering & regularization

86.9

88.6

90.3

Accuracy

80.7Linear model
+ spatial representation

+ factorized
+ across studies

60 80
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@GaelVaroquaux

Learning with limited labeled data: fMRI lessons

Sparse models are unstable and need ensembling
Parameter selection is unstable and needs ensembling
`2 shrinkage is powerful, in particular with good

mean & covariance
Unsupervised learning of representations
Multi-task to pool data

Software for machine learning in neuroimaging:
http://nilearn.github.io

ni scikit

machine learning in Python
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