Learning from Limited Labeled Data (but a lot of unlabeled data)

NELL as a case study

Tom M. Mitchell

Carnegie Mellon University

Thesis:

We will never really understand learning until we build machines that

- learn many different things,
- from years of diverse experience,
- in a staged, curricular fashion,
- and become better <u>learners</u> over time.

NELL: Never-Ending Language Learner

The task:

- run 24x7, forever
- each day:
 - 1. extract more facts from the web to populate the ontology
 - learn to read (perform #1) better than yesterday

Inputs:

- initial ontology (categories and relations)
- dozen examples of each ontology predicate
- the web
- occasional interaction with human trainers

NELL today

Running 24x7, since January, 12, 2010

Result:

- KB with ~120 million confidence-weighted beliefs
- learning to read
- learning to reason
- extending ontology

NELL knowledge fragment football uses * including only correct beliefs equipment climbing helmet skates Canada Sunnybrook Miller uses equipment citv country hospital Wilson company hockey **Detroit** GM politician **CFRB** radio Pearson **Toronto** hometown play hired competes airport home town with **Stanley** citv **Maple Leafs** Red company city Wings Toyota stadium team stadium league league Connaught city acquired paper city Air Canada NHL member created stadium Hino Centre plays in economic sector **Globe and Mail** Sundin **Prius** writer automobile Toskala **Skydome** Corrola Milson

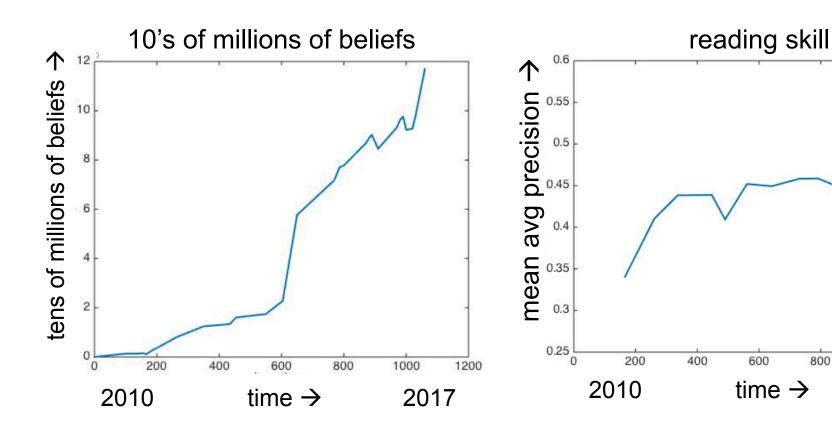
1000

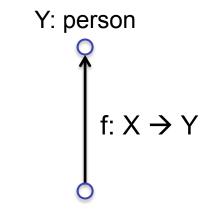
1200

2016

800

Improving Over Time Never Ending Language Learner



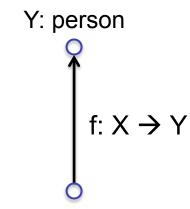


X: noun phrase

hard

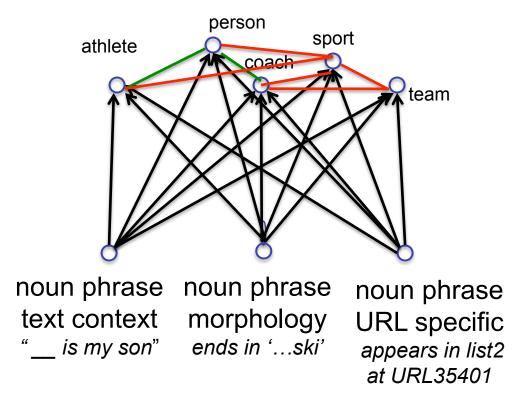
(underconstrained) semi-supervised learning

Key Idea: Massively coupled semi-supervised training



X: noun phrase

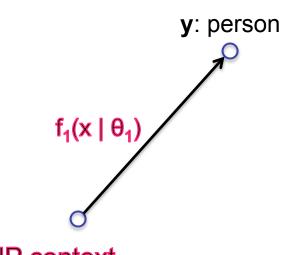
hard (underconstrained) semi-supervised learning



much easier

(more constrained) semi-supervised learning

Supervised training of 1 function:



$$\theta_1 = \arg\min_{\theta_1}$$

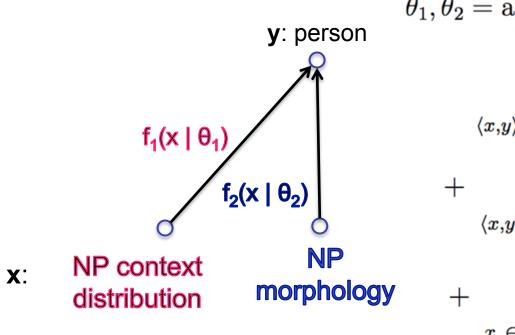
$$\sum_{\langle x,y\rangle \in labeled \ data} |f_1(x|\theta_1) - y|$$

x: NP context distribution

__ is a friend rang the __

__ walked in

Coupled training of 2 functions:



$$heta_1, heta_2 = rg\min_{ heta_1, heta_2}$$

$$\sum_{\langle x,y\rangle \in labeled \ data} |f_1(x|\theta_1) - y|$$

$$+ \sum_{\langle x,y\rangle \in labeled \ data} |f_2(x|\theta_2) - y|$$

+
$$\sum_{x \in unlabeled \ data} |f_1(x|\theta_1) - f_2(x|\theta_2)|$$

__ is a friend capitalized?
rang the __ ends with '...ski'?
...
walked in contains "univ."?

NELL Learned Contexts for "Hotel" (~1% of total)

"_ is the only five-star hotel" "_ is the only hotel" "_ is the perfect accommodation" "_ is the perfect address" "_ is the perfect lodging" "_ is the sister hotel" " is the ultimate hotel" " is the value choice" " is uniquely situated in" "_ is Walking Distance" "_ is wonderfully situated in" "_ las vegas hotel" "_ los angeles hotels" "_ Make an online hotel reservation" "_ makes a great home-base" "_ mentions Downtown" "_ mette a disposizione" "_ miami south beach" "_ minded traveler" "_ mucha prague Map Hotel" " n'est qu'quelques minutes" "_ naturally has a pool" "_ is the perfect central location" "_ is the perfect extended stay hotel" "_ is the perfect headquarters" "_ is the perfect home base" " is the perfect lodging choice" " north reddington beach" "_ now offer guests" "_ now offers guests" "_ occupies a privileged location" "_ occupies an ideal location" "_ offer a king bed" "_ offer a large bedroom" " offer a master bedroom" "_ offer a refrigerator" "_ offer a separate living area" "_ offer a separate living room" "_ offer comfortable rooms" "_ offer complimentary shuttle service" "_ offer deluxe accommodations" "_ offer family rooms" " offer secure online reservations" " offer upscale amenities" "_ offering a complimentary continental breakfast" "_ offering comfortable rooms" "_ offering convenient access" "_ offering great lodging" "_ offering luxury accommodation" "_ offering world class facilities" "_ offers a business center" "_ offers a business centre" "_ offers a casual elegance" "_ offers a central location" " surrounds travelers" ...

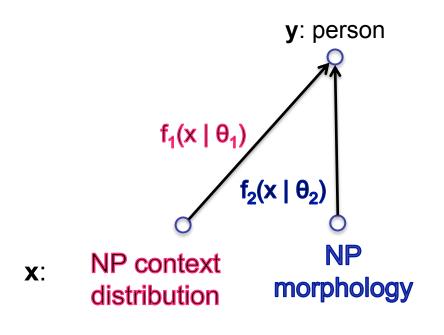
NELL Highest Weighted* string fragments: "Hotel"

```
1.82307 SUFFIX=tel
```

- 1.81727 SUFFIX=otel
- 1.43756 LAST_WORD=inn
- 1.12796 PREFIX=in
- 1.12714 PREFIX=hote
- 1.08925 PREFIX=hot
- 1.06683 SUFFIX=odge
- 1.04524 SUFFIX=uites
- 1.04476 FIRST_WORD=hilton
- 1.04229 PREFIX=resor
- 1.02291 SUFFIX=ort
- 1.00765 FIRST WORD=the
- 0.97019 SUFFIX=ites
- 0.95585 FIRST WORD=le
- 0.95574 PREFIX=marr
- 0.95354 PREFIX=marri
- 0.93224 PREFIX=hyat
- 0.92353 SUFFIX=yatt
- 0.88297 SUFFIX=riott
- 0.88023 PREFIX=west
- 0.87944 SUFFIX=iott

^{*} logistic regression

Type 1 Coupling: Co-Training, Multi-View Learning



Theorem (Blum & Mitchell, 1998):

If f₁,and f₂ are PAC learnable from noisy labeled data, and X₁, X₂ are conditionally independent given Y,

Then f₁, f₂ are PAC learnable from polynomial *unlabeled* data plus a weak initial predictor

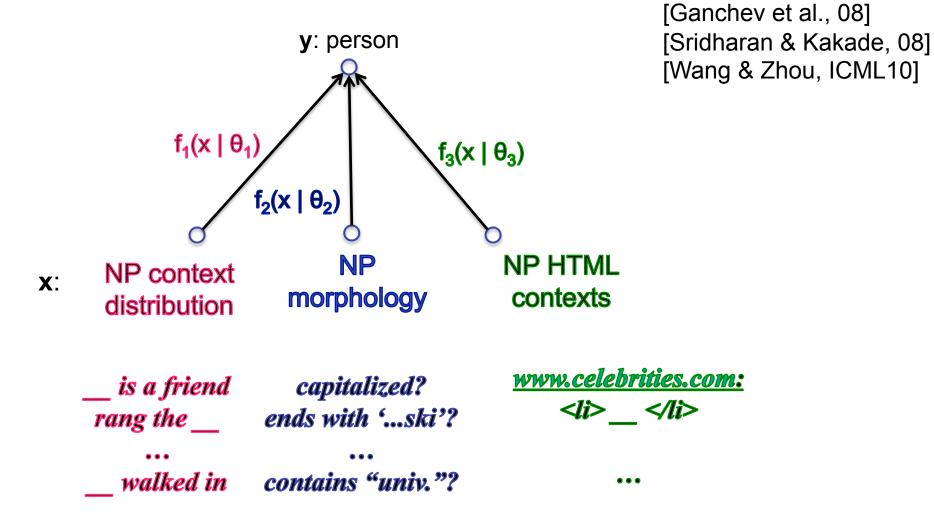
```
__ is a friend capitalized?
rang the __ ends with '...ski'?
... ...
walked in contains "univ."?
```

Type 1 Coupling: Co-Training, Multi-View Learning

[Blum & Mitchell; 98]

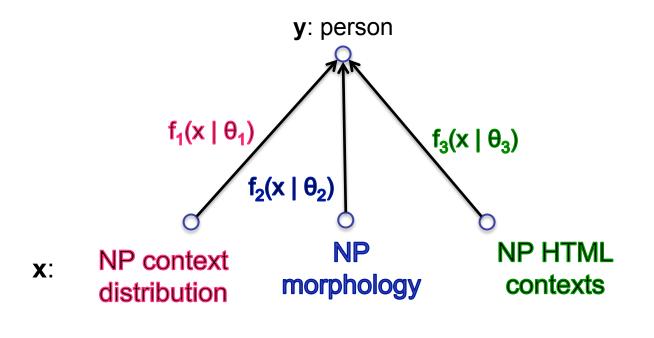
[Dasgupta et al; 01]

[Balcan & Blum; 08]



Type 1 Coupling: Co-Training, Multi-View Learning

sample complexity drops exponentially in the number of views of X



[Blum & Mitchell; 98] [Dasgupta et al; 01] [Balcan & Blum; 08] [Ganchev et al., 08] [Sridharan & Kakade, 08] [Wang & Zhou, ICML10]

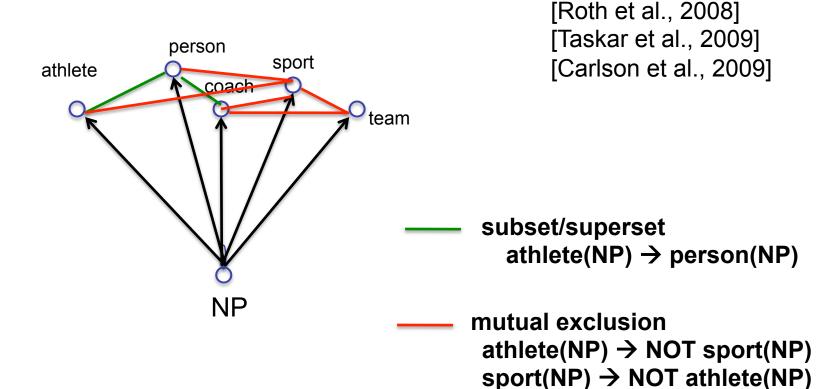
www.celebrities.com: is a friend capitalized? rang the ends with '...ski'?

walked in

contains "univ."?

__

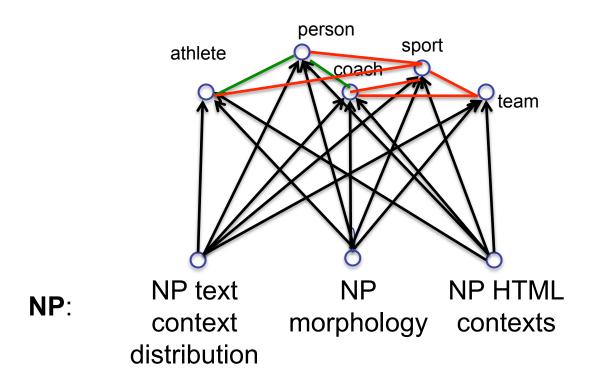
Type 2 Coupling: Multi-task, Structured Outputs

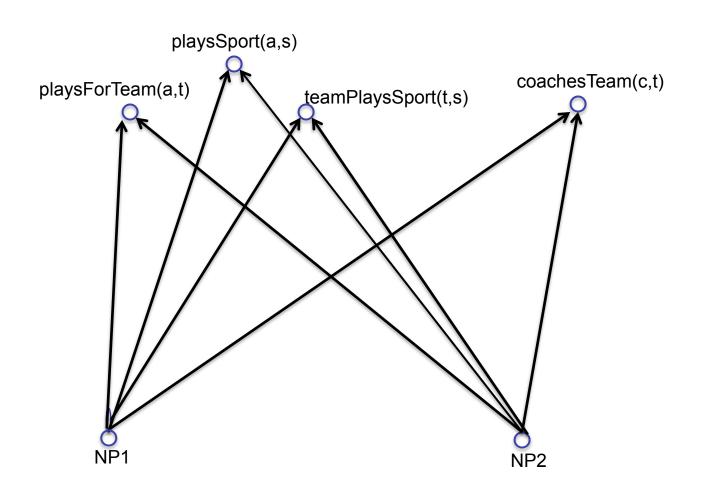


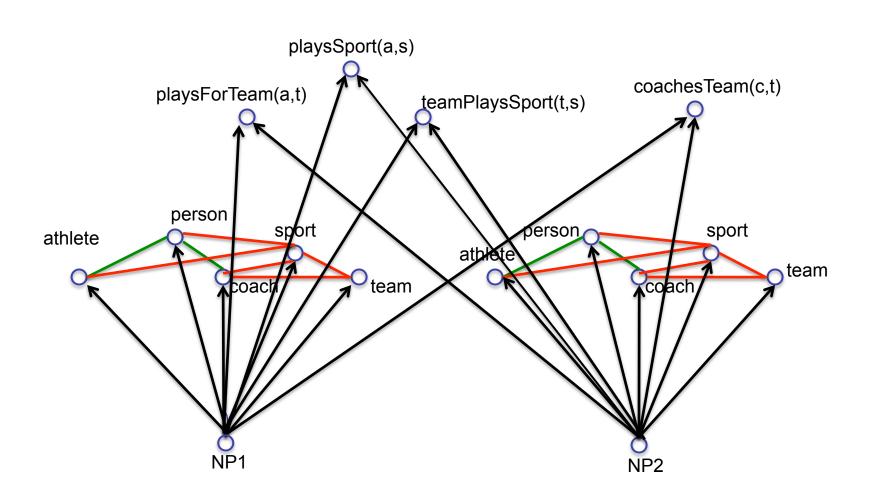
[Daume, 2008]

[Bakhir et al., eds. 2007]

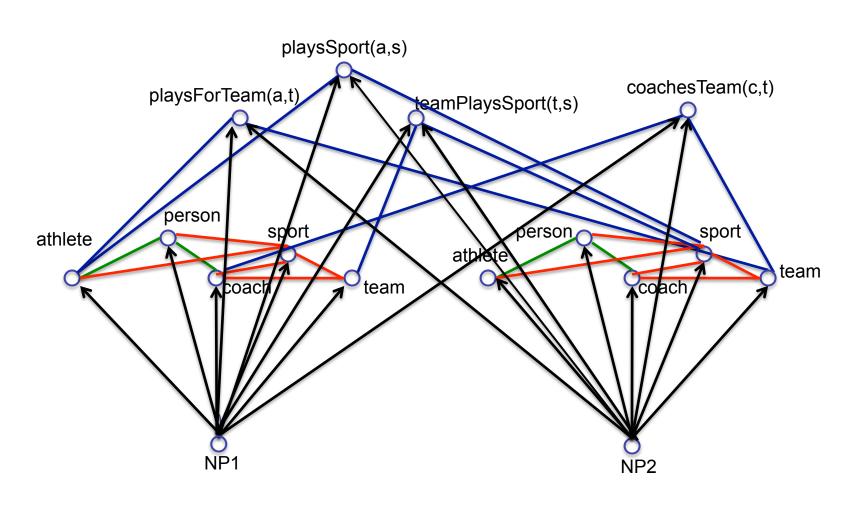
Multi-view, Multi-Task Coupling



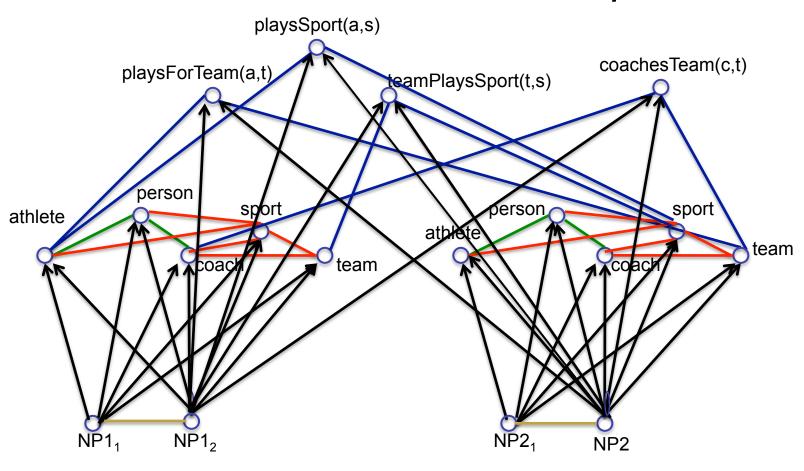




playsSport(NP1,NP2) → athlete(NP1), sport(NP2)



over 4000 coupled functions in NELL



multi-view consistencyargument type consistency

subset/superset mutual exclusion

How to train

approximation to EM:

- E step: predict beliefs from unlabeled data (ie., the KB)
- M step: retrain

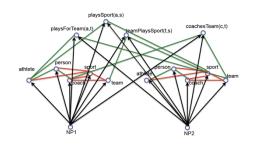
NELL approximation:

- bound number of new beliefs per iteration, per predicate
- rely on multiple iterations for information to propagate, partly through joint assignment, partly through training examples

Better approximation:

 Joint assignments based on probabilistic soft logic [Pujara, et al., 2013] [Platanios et al., 2017] If coupled learning is the key, how can we get new coupling constraints?

Key Idea 2:



Learn new coupling constraints

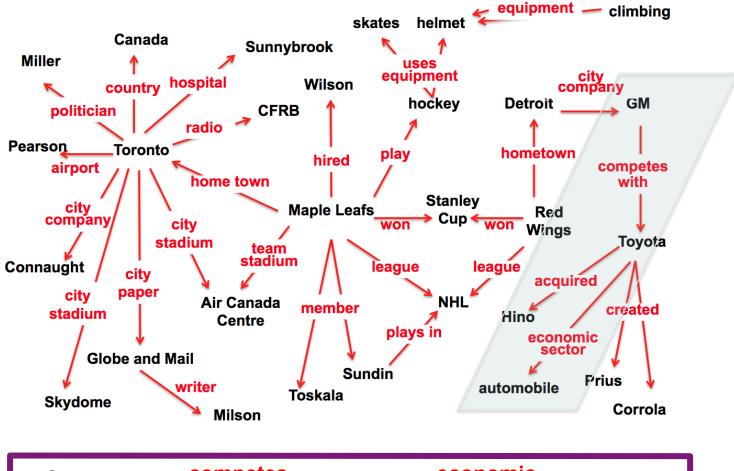
first order, probabilistic horn clause constraints:

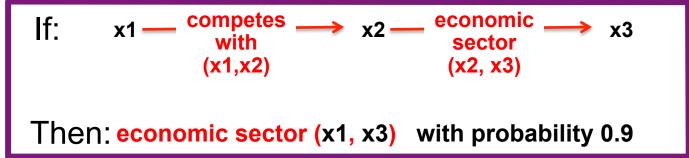
0.93 athletePlaysSport(?x,?y) ← athletePlaysForTeam(?x,?z) teamPlaysSport(?z,?y)

- learned by data mining the knowledge base
- connect previously uncoupled relation predicates
- infer new unread beliefs
- NELL has 100,000s of learned rules
- uses PRA random-walk inference [Lao, Cohen, Gardner]

Key Idea 2: Learn inference rules

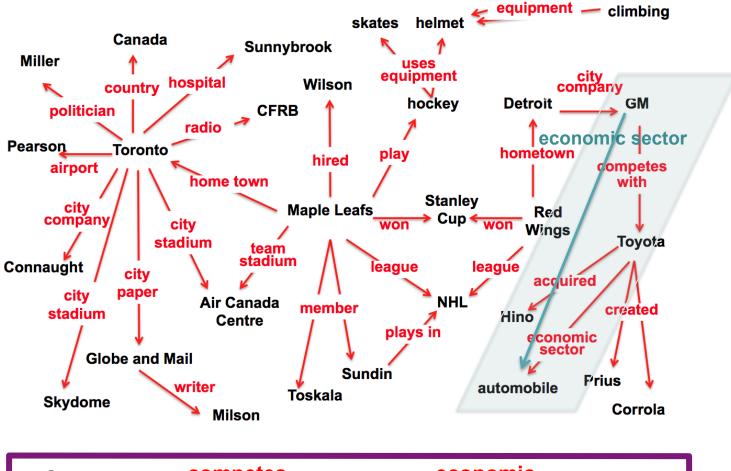
PRA: [Lao, Mitchell, Cohen, EMNLP 2011]

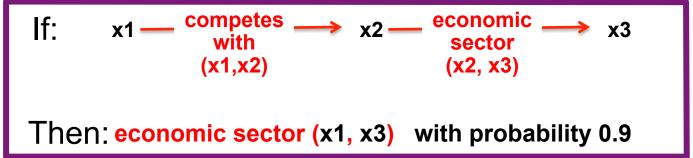




Key Idea 2: Learn inference rules

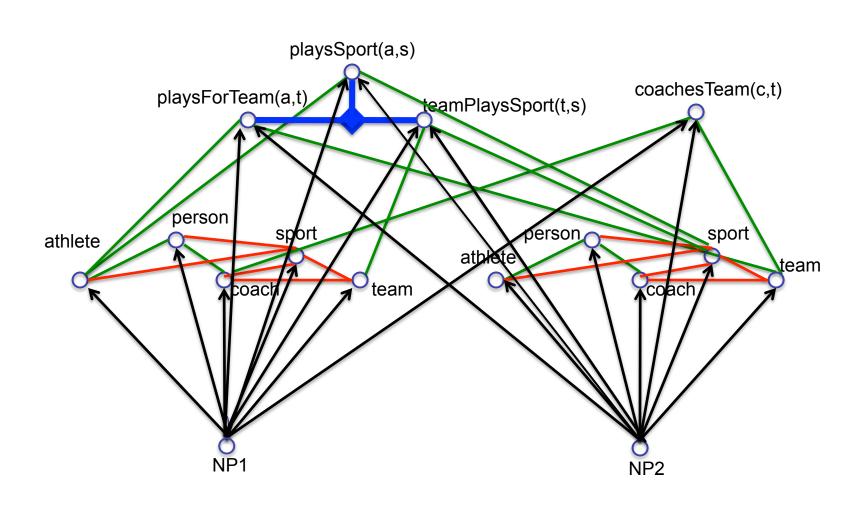
PRA: [Lao, Mitchell, Cohen, EMNLP 2011]





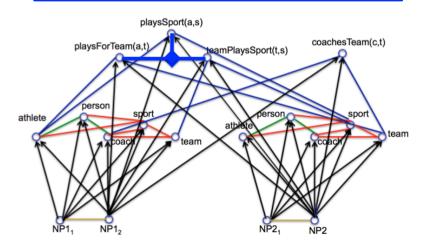
Learned Rules are New Coupling Constraints!

0.93 playsSport(?x,?y) \leftarrow playsForTeam(?x,?z), teamPlaysSport(?z,?y)



Learned Rules are New Coupling Constraints!

0.93 playsSport(?x,?y) ← playsForTeam(?x,?z), teamPlaysSport(?z,?y)



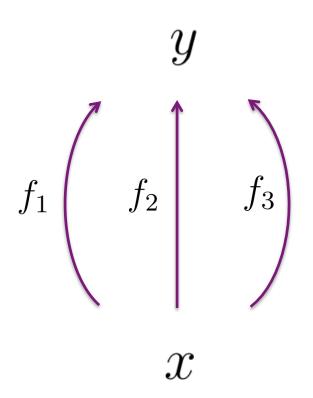
- Learning X makes one a better <u>learner</u> of Y
- Learning Y makes one a better <u>learner</u> of X
 - $X = reading functions: text \rightarrow beliefs$
 - Y = Horn clause rules: beliefs → beliefs

Consistency and Correctness

what is the relationship?
under what conditions?
link between learning and error estimation

Problem setting:

• have N different estimates $f_1, \dots f_N$ of target function f^* $y = f^*(x); y \in \{0, 1\}$



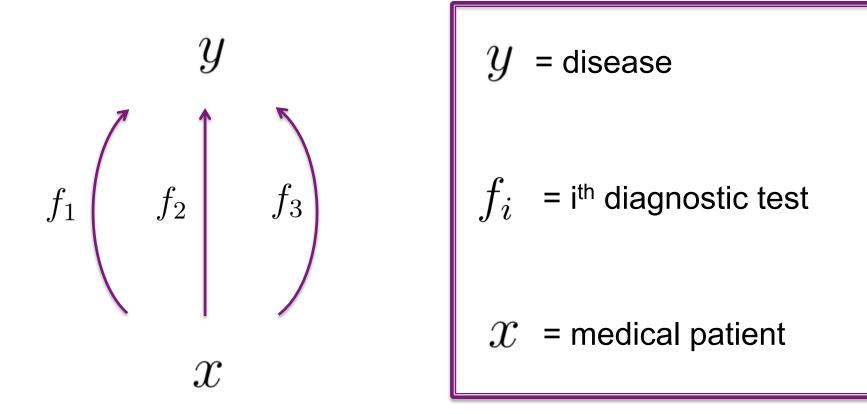
$$y$$
 = NELL category "city"

$$f_i$$
 = classifier based on ith view of x

 \mathcal{X} = noun phrase

Problem setting:

• have N different estimates $f_1, \ldots f_N$ of target function f^*



[Hui & Walter, 1980; Collins & Huynh, 2014]

[Platanios, Blum, Mitchell]

Problem setting:

• have N different estimates $f_1, \dots f_N$ of target function f^* $f^*: X \to Y; Y \in \{0, 1\}$

Goal:

• estimate accuracy of each of $f_1, \ldots f_N$ from **unlabeled** data

Problem setting:

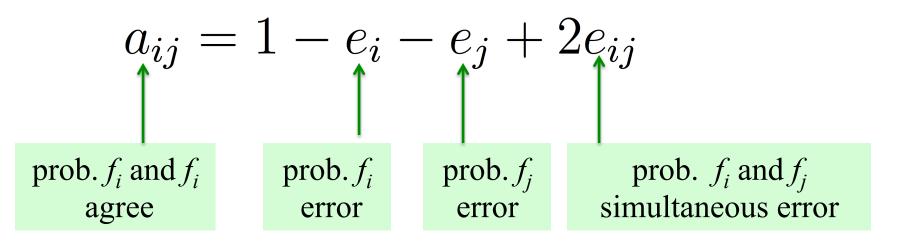
- have N different estimates $f_1, \dots f_N$ of target function f^* $f^*: X \to Y; \ Y \in \{0, 1\}$
- agreement between $f_i, f_j: a_{ij} \equiv P_x(f_i(x) = f_j(x))$

Problem setting:

- have N different estimates $f_1, \dots f_N$ of target function f^* $f^*: X \to Y; Y \in \{0, 1\}$
- agreement between $f_i, f_j: a_{ij} \equiv P_x(f_i(x) = f_j(x))$

Key insight: errors and agreement rates are related agreement can be estimated from unlabeled data

 $a_{ij} = \Pr[\text{neither makes error}] + \Pr[\text{both make error}]$



Estimating Error from Unlabeled Data

1. IF f_1 , f_2 , f_3 make independent errors, and accuracies > 0.5

then
$$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$
 becomes
$$a_{ij} = 1 - e_i - e_j + 2e_ie_j$$

Determine errors from unlabeled data!

- use unlabeled data to estimate a_{12} , a_{13} , a_{23}
- solve three equations for three unknowns e_1 , e_2 , e_3

Estimating Error from Unlabeled Data

1. IF f_1 , f_2 , f_3 make indep. errors, accuracies > 0.5 then $a_{ij}=1-e_i-e_j+2e_{ij}$ becomes $a_{ij}=1-e_i-e_j+2e_ie_j$

2. but if errors **not** independent

Estimating Error from Unlabeled Data

- 1. IF f_i , f_2 , f_3 make indep. errors, accuracies > 0.5 then $a_{ij}=1-e_i-e_j+2e_{ij}$ becomes $a_{ij}=1-e_i-e_j+2e_ie_j$
- 2. but if errors **not** independent, add prior: the more independent, the more probable

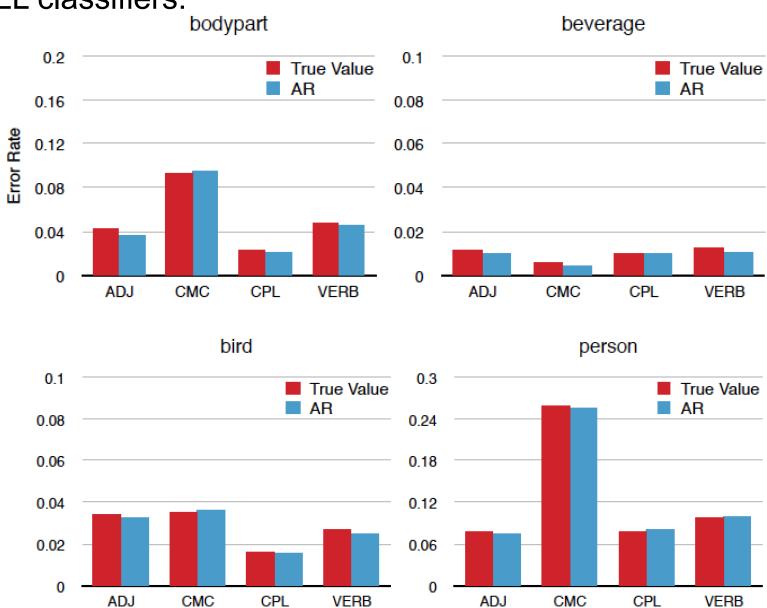
min
$$\sum_{i,j} (e_{ij} - e_i e_j)^2$$

such that
$$(\forall i,j) \ a_{ij} = 1 - e_i - e_j + 2e_{ij}$$

True error (red), estimated error (blue)

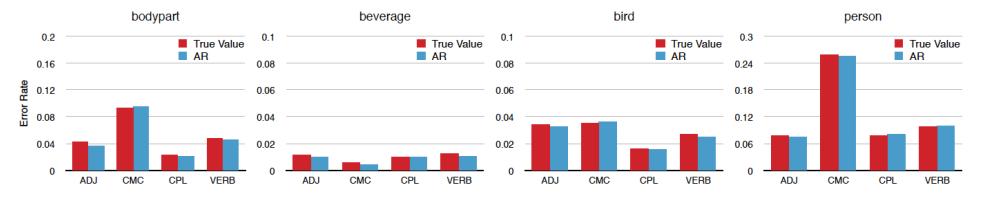
NELL classifiers:

[Platanios et al., 2014]

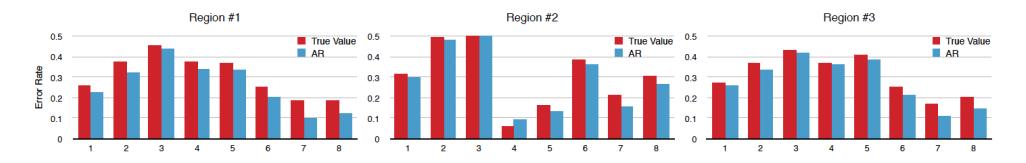


True error (red), estimated error (blue) [Platanios, Blum, Mitchell]

NELL classifiers:



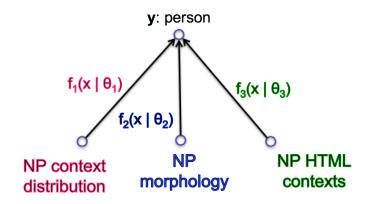
Brain image fMRI classifiers:



Multiview setting

Given functions $f_i: X_i \rightarrow \{0,1\}$ that

- make independent errors
- are better than chance



If you have at least 2 such functions

 they can be <u>PAC learned</u> by training them to agree over unlabeled data [Blum & Mitchell, 1998]

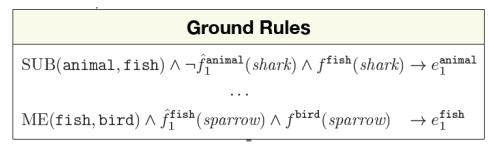
If you have at least 3 such functions

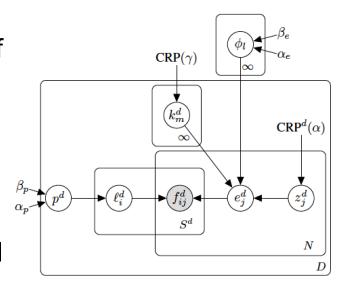
 their <u>accuracy</u> can be calculated from agreement rates over unlabeled data [Platanios et al., 2014]

Is accuracy estimation strictly harder than learning?

More on Accuracy Estimation

- Graphical model approach, learns clusters of target functions, and clusters of classifier types to share parameters: "Estimating Accuracy from Unlabeled Data: A Bayesian Approach", ICML, Platanios et. al., 2016
- Logical approach using PSL to model mutual exclusion and subsumption constraints.
 Outputs both error rates and estimated labels. "Estimating Accuracy from Unlabeled Data: A Logical Approach," NIPS, Platanios et. al, 2017





Conclusions

- To make semi-supervised learning easier, couple training of many functions
 - and learn new consistency coupling constraints over time
- Consistency vs. Correctness
 - coupled training + initial assumptions ->

 increasing consistency = increasing correctness]
- Accuracy can be estimated from rate of consistency
- Open questions:
 - under what conditions does consistency → correctness?
 - what architectures for learning agents can achieve these conditions?
 - is unlabeled accuracy estimation harder than unlabeled learning?

thank you!

follow NELL on Twitter: @CMUNELL browse/download NELL's KB at http://rtw.ml.cmu.edu