Learning from Limited Labeled Data
(but a lot of unlabeled data)

NELL as a case study

Tom M. Mitchell

Carnegie Mellon University
Thesis:

We will never really understand learning until we build machines that
• learn many different things,
• from years of diverse experience,
• in a staged, curricular fashion,
• and become better learners over time.
NELL: Never-Ending Language Learner

The task:
• run 24x7, forever
• each day:
 1. extract more facts from the web to populate the ontology
 2. learn to read (perform #1) better than yesterday

Inputs:
• initial ontology (categories and relations)
• dozen examples of each ontology predicate
• the web
• occasional interaction with human trainers
NELL today

Running 24x7, since January, 12, 2010

Result:
- KB with ~120 million confidence-weighted beliefs
- learning to read
- learning to reason
- extending ontology
Improving Over Time
Never Ending Language Learner

10’s of millions of beliefs

2010 time → 2017

mean avg precision

2010 time → 2016

[B. Mitchell et al., CACM 2017]
hard
(underconstrained)
semi-supervised
learning
Key Idea: Massively coupled semi-supervised training

\[f: X \rightarrow Y \]

X: noun phrase

Y: person

- noun phrase text context: "__ is my son"
- noun phrase morphology: ends in ‘…ski’
- noun phrase URL specific: appears in list2 at URL35401

hard
(underconstrained)
semi-supervised learning

much easier
(more constrained)
semi-supervised learning
Supervised training of 1 function:

\[\theta_1 = \arg \min_{\theta_1} \sum_{(x,y) \in \text{labeled data}} |f_1(x|\theta_1) - y| \]
Coupled training of 2 functions:

\[\theta_1, \theta_2 = \arg \min_{\theta_1, \theta_2} \sum_{(x,y) \in \text{labeled data}} |f_1(x|\theta_1) - y| + \sum_{(x,y) \in \text{labeled data}} |f_2(x|\theta_2) - y| + \sum_{x \in \text{unlabeled data}} |f_1(x|\theta_1) - f_2(x|\theta_2)| \]
NELL Learned Contexts for “Hotel” (~1% of total)

"_ is the only five-star hotel" "_ is the only hotel" "_ is the perfect accommodation" "_ is the perfect address" "_ is the perfect lodging" "_ is the sister hotel" "_ is the ultimate hotel" "_ is the value choice" "_ is uniquely situated in" "_ is Walking Distance" "_ is wonderfully situated in" "_ las vegas hotel" "_ los angeles hotels" "_ Make an online hotel reservation" "_ makes a great home-base" "_ mentions Downtown" "_ mette a disposizione" "_ miami south beach" "_ minded traveler" "_ mucha prague Map Hotel" "_ n'est qu' quelques minutes" "_ naturally has a pool" "_ is the perfect central location" "_ is the perfect extended stay hotel" "_ is the perfect headquarters" "_ is the perfect home base" "_ is the perfect lodging choice" "_ north reddington beach" "_ now offer guests" "_ now offers guests" "_ occupies a privileged location" "_ occupies an ideal location" "_ offer a king bed" "_ offer a large bedroom" "_ offer a master bedroom" "_ offer a refrigerator" "_ offer a separate living area" "_ offer a separate living room" "_ offer comfortable rooms" "_ offer complimentary shuttle service" "_ offer deluxe accommodations" "_ offer family rooms" "_ offer secure online reservations" "_ offer upscale amenities" "_ offering a complimentary continental breakfast" "_ offering comfortable rooms" "_ offering convenient access" "_ offering great lodging" "_ offering luxury accommodation" "_ offering world class facilities" "_ offers a business center" "_ offers a business centre" "_ offers a casual elegance" "_ offers a central location" “_ surrounds travelers” …
NELL Highest Weighted* string fragments: “Hotel”

1.82307 SUFFIX=tel
1.81727 SUFFIX=otel
1.43756 LAST_WORD=inn
1.12796 PREFIX=in
1.12714 PREFIX=hote
1.08925 PREFIX=hot
1.06683 SUFFIX=odge
1.04524 SUFFIX=uites
1.04476 FIRST_WORD=hilton
1.04229 PREFIX=resor
1.02291 SUFFIX=ort
1.00765 FIRST_WORD=the
0.97019 SUFFIX=ites
0.95585 FIRST_WORD=le
0.95574 PREFIX=marr
0.95354 PREFIX=marri
0.93224 PREFIX=hyat
0.92353 SUFFIX=yatt
0.88297 SUFFIX=riott
0.88023 PREFIX=west
0.87944 SUFFIX=iott

* logistic regression
Type 1 Coupling: Co-Training, Multi-View Learning

Theorem (Blum & Mitchell, 1998):

If f_1 and f_2 are PAC learnable from noisy labeled data, and X_1, X_2 are conditionally independent given Y, then f_1, f_2 are PAC learnable from polynomial unlabeled data plus a weak initial predictor.

Diagram:

- x: NP context distribution
- y: person
- $f_1(x | \theta_1)$
- $f_2(x | \theta_2)$

Sample sentences for testing:

- __is a friend
- rang the ___
- ___ walked in
- capitalized?
- ends with ‘...ski’?
- ... contains “univ.”?
Type 1 Coupling: Co-Training, Multi-View Learning

y: person

$f_1(x | \theta_1)$

$f_2(x | \theta_2)$

$f_3(x | \theta_3)$

x: NP context distribution

NP morphology

NP HTML contexts

___ is a friend
rang the ___

ends with ‘...ski’?

___ walked in

contains “univ.”?

www.celebrities.com:

Type 1 Coupling: Co-Training, Multi-View Learning

Sample complexity drops exponentially in the number of views of X

[Blum & Mitchell; 98]
[Dasgupta et al; 01]
[Balcan & Blum; 08]
[Ganchev et al., 08]
[Sridharan & Kakade, 08]
[Wang & Zhou, ICML10]

y: person

$f_1(x | \theta_1)$

$f_2(x | \theta_2)$

$f_3(x | \theta_3)$

x: NP context distribution

NP morphology

NP HTML contexts

____ is a friend
rang the ___

... capitalized?
ends with ‘...ski’?

... walked in
contains “univ.”?

www.celebrities.com:

<!--li-->__
Type 2 Coupling: Multi-task, Structured Outputs

[Daume, 2008]
[Bakhir et al., eds. 2007]
[Roth et al., 2008]
[Taskar et al., 2009]
[Carlson et al., 2009]
Multi-view, Multi-Task Coupling

NP:
- NP text context distribution
- NP morphology
- NP HTML contexts
Type 3 Coupling: Relations and Argument Types

playsSport(a,s)
playsForTeam(a,t)
teamPlaysSport(t,s)
coachesTeam(c,t)

NP1
NP2
Type 3 Coupling: Relations and Argument Types
Type 3 Coupling: Relations and Argument Types

\[\text{playsSport}(\text{NP1}, \text{NP2}) \rightarrow \text{athlete}(\text{NP1}), \text{sport}(\text{NP2}) \]
Type 3 Coupling: Relations and Argument Types

Over 4000 coupled functions in NELL
How to train

approximation to EM:
• E step: predict beliefs from unlabeled data (i.e., the KB)
• M step: retrain

NELL approximation:
• bound number of new beliefs per iteration, per predicate
• rely on multiple iterations for information to propagate, partly through joint assignment, partly through training examples

Better approximation:
• Joint assignments based on probabilistic soft logic
 [Pujara, et al., 2013] [Platanios et al., 2017]
If coupled learning is the key, how can we get new coupling constraints?
Key Idea 2: Learn new coupling constraints

- first order, probabilistic horn clause constraints:

 0.93 \(\text{athletePlaysSport}(?x,?y) \leftarrow \text{athletePlaysForTeam}(?x,?z) \)
 \(\text{teamPlaysSport}(?z,?y) \)

 - learned by data mining the knowledge base
 - connect previously uncoupled relation predicates
 - infer new unread beliefs
 - NELL has 100,000s of learned rules
 - uses PRA random-walk inference [Lao, Cohen, Gardner]
If: \(x_1 \) competes with \((x_1, x_2)\) \(x_2 \) in economic sector \((x_2, x_3)\) Then: economic sector \((x_1, x_3)\) with probability 0.9

Key Idea 2: Learn inference rules

PRA: [Lao, Mitchell, Cohen, EMNLP 2011]
Key Idea 2: Learn inference rules

PRA: [Lao, Mitchell, Cohen, EMNLP 2011]

If: \(x_1 \) competes with \((x_1, x_2)\) \(x_2 \) economic sector \((x_2, x_3)\)

Then: economic sector \((x_1, x_3)\) with probability 0.9
Learned Rules are New Coupling Constraints!

0.93 \(\text{playsSport}(\text{x}, \text{y}) \leftarrow \text{playsForTeam}(\text{x}, \text{z}), \text{teamPlaysSport}(\text{z}, \text{y}) \)
Learned Rules are New Coupling Constraints!

- Learning X makes one a better learner of Y
- Learning Y makes one a better learner of X

$X =$ reading functions: text \rightarrow beliefs
$Y =$ Horn clause rules: beliefs \rightarrow beliefs
Consistency and Correctness

what is the relationship?
under what conditions?
link between learning and error estimation
Problem setting:

- have N different estimates f_1, \ldots, f_N of target function f^*

$$y = f^*(x); \quad y \in \{0, 1\}$$

y = NELL category “city”

f_i = classifier based on i^{th} view of x

x = noun phrase

[Platanios, Blum, Mitchell]
Problem setting:
• have N different estimates f_1, \ldots, f_N of target function f^*

$y = \text{disease}$

$f_i = \text{i}^{\text{th}} \text{ diagnostic test}$

$x = \text{medical patient}$

[Hui & Walter, 1980; Collins & Huynh, 2014]
Problem setting:
• have N different estimates f_1, \ldots, f_N of target function f^*

\[
f^* : X \rightarrow Y; \quad Y \in \{0, 1\}\]

Goal:
• estimate accuracy of each of f_1, \ldots, f_N from \underline{unlabeled} data

[Platanios, Blum, Mitchell]
Problem setting:

- have N different estimates f_1, \ldots, f_N of target function f^*
 $$f^* : X \rightarrow Y; \quad Y \in \{0, 1\}$$

- *agreement* between f_i, f_j: $a_{ij} \equiv P_x(f_i(x) = f_j(x))$
Problem setting:

- have N different estimates f_1, \ldots, f_N of target function f^*

 \[f^* : X \rightarrow Y; \quad Y \in \{0, 1\} \]

- agreement between f_i, f_j: $a_{ij} \equiv P_x(f_i(x) = f_j(x))$

Key insight: errors and agreement rates are related

agreement can be estimated from unlabeled data

\[a_{ij} = \Pr[\text{neither makes error}] + \Pr[\text{both make error}] \]

\[a_{ij} = 1 - e_i - e_j + 2e_{ij} \]

- prob. f_i and f_i agree
- prob. f_i error
- prob. f_j error
- prob. f_i and f_j simultaneous error
Estimating Error from Unlabeled Data

1. IF f_1, f_2, f_3 make independent errors, and accuracies > 0.5 then
 becomes

 $$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$

Determine errors from unlabeled data!
- use unlabeled data to estimate a_{12}, a_{13}, a_{23}
- solve three equations for three unknowns e_1, e_2, e_3
Estimating Error from Unlabeled Data

1. IF f_1, f_2, f_3 make indep. errors, accuracies > 0.5 then
 \[a_{ij} = 1 - e_i - e_j + 2e_{ij} \]
 becomes \[a_{ij} = 1 - e_i - e_j + 2e_i e_j \]

2. but if errors not independent
Estimating Error from Unlabeled Data

1. IF f_1, f_2, f_3 make indep. errors, accuracies > 0.5
 then
 $$a_{ij} = 1 - e_i - e_j + 2e_{ij}$$
 becomes
 $$a_{ij} = 1 - e_i - e_j + 2e_i e_j$$

2. but if errors not independent, add prior:
 the more independent, the more probable

 $$\min \sum_{i,j} (e_{ij} - e_i e_j)^2$$
 such that
 $$(\forall i, j) \ a_{ij} = 1 - e_i - e_j + 2e_{ij}$$
True error (red), estimated error (blue)

NELL classifiers:

[Platanios et al., 2014]
True error (red), estimated error (blue) [Platanios, Blum, Mitchell]

NELL classifiers:

Brain image fMRI classifiers:
Multiview setting

Given functions $f_i: X_i \rightarrow \{0,1\}$ that
- make independent errors
- are better than chance

If you have at least 2 such functions
- they can be PAC learned by training them to agree over unlabeled data [Blum & Mitchell, 1998]

If you have at least 3 such functions
- their accuracy can be calculated from agreement rates over unlabeled data [Platanios et al., 2014]

Is accuracy estimation strictly harder than learning?
More on Accuracy Estimation

- Graphical model approach, learns clusters of target functions, and clusters of classifier types to share parameters: “Estimating Accuracy from Unlabeled Data: A Bayesian Approach”, ICML, Platanios et al., 2016

<table>
<thead>
<tr>
<th>Ground Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUB(animal, fish) (\land) (\neg f^\text{animal}_1(\text{shark}) \land f^\text{fish}(\text{shark}) \rightarrow e^\text{animal}_1)</td>
</tr>
<tr>
<td>...</td>
</tr>
<tr>
<td>ME(fish, bird) (\land) (f^\text{fish}_1(\text{sparrow}) \land f^\text{bird}(\text{sparrow}) \rightarrow e^\text{fish}_1)</td>
</tr>
</tbody>
</table>
Conclusions

• To make semi-supervised learning easier, couple training of many functions
 – and learn new consistency coupling constraints over time

• Consistency vs. Correctness
 – coupled training + initial assumptions →
 [increasing consistency = increasing correctness]

• Accuracy can be estimated from rate of consistency

• Open questions:
 – under what conditions does consistency → correctness?
 – what architectures for learning agents can achieve these conditions?
 – is unlabeled accuracy estimation harder than unlabeled learning?
thank you!

follow NELL on Twitter: @CMUNELL
browse/download NELL’s KB at http://rtw.ml.cmu.edu